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Abstract—Federated Learning (FL) enables collaborative
model training across distributed clients without sharing raw
data, making it ideal for privacy-sensitive applications. How-
ever, FL models often suffer performance degradation due
to distribution shifts between training and deployment. Test-
Time Adaptation (TTA) offers a promising solution by allowing
models to adapt using only test samples. However, existing TTA
methods in FL face challenges such as computational overhead,
privacy risks from feature sharing, and scalability concerns
due to memory constraints. To address these limitations, we
propose Federated Continual Test-Time Adaptation (FedCTTA),
a privacy-preserving and computationally efficient framework
for federated adaptation. Unlike prior methods that rely on
sharing local feature statistics, FedCTTA avoids direct feature
exchange by leveraging similarity-aware aggregation based on
model output distributions over randomly generated noise sam-
ples. This approach ensures adaptive knowledge sharing while
preserving data privacy. Furthermore, FedCTTA minimizes the
entropy at each client for continual adaptation, enhancing the
model’s confidence in evolving target distributions. Our method
eliminates the need for server-side training during adaptation and
maintains a constant memory footprint, making it scalable even
as the number of clients or training rounds increases. Extensive
experiments show that FedCTTA surpasses existing methods
across diverse temporal and spatial heterogeneity scenarios.

Index Terms—Federated learning, Continual Test-Time Adap-
tation

I. INTRODUCTION

Test-Time Adaptation (TTA) is revolutionizing deep learn-
ing by enabling models to adapt dynamically to unseen data
distributions during deployment. Traditional machine learning
models often degrade in performance when a distribution shift
occurs between training and testing data. For instance, an au-
tonomous medical imaging system trained on high-resolution
hospital scans may struggle to interpret low-quality scans from
rural clinics due to differences in imaging equipment. Existing
solutions such as Domain Generalization (DG) [1]–[3] and
Domain Adaptation (DA) [4], [5] attempt to mitigate this
issue by either training on diverse domains or adapting from
a source domain. However, DG requires sufficient domain
diversity, and DA depends on access to source data, which
may be impractical due to privacy constraints. TTA overcomes
these constraints by allowing models to self-adapt using only
incoming test samples, eliminating the need for retraining or
access to original training data. Recent advancements in TTA

[6]–[8] leverage techniques such as entropy minimization, self-
supervised learning, and feature alignment, ensuring robust
model performance in dynamic and privacy-sensitive environ-
ments.

Data privacy concerns, driven by regulations like GDPR
[9], challenge traditional machine learning, which relies on
centralized data processing. Federated Learning (FL) [10]
addresses this by enabling collaborative model training across
decentralized clients without sharing raw data, making it
ideal for privacy-sensitive domains like healthcare and finance.
However, TTA in FL remains challenging due to heterogeneous
and evolving data distributions across clients. For instance,
in federated healthcare, hospitals generate non-IID data due
to varying patient demographics, equipment, and practices,
causing models to struggle when deployed in settings with
unseen data distributions.

Local adaptation, where each client fine-tunes the model
using its own test data, fails to leverage broader shifts useful
for generalization. Collaborative adaptation, where clients
share insights without raw data, could improve performance
but faces challenges: (1) privacy risks from feature or gradient
sharing, (2) model misalignment due to distinct distribu-
tion shifts, and (3) scalability issues for resource-constrained
clients. Our objective is to develop privacy-preserving and
efficient TTA framework that enables decentralized models
to adapt to evolving conditions while maintaining Federated
Learning (FL)’s privacy guarantees. This ensures robust and
scalable deployment of FL models in dynamic environments,
allowing them to generalize effectively despite distribution
shifts across decentralized clients.

Recent approaches have explored TTA in FL to enhance
model robustness in decentralized environments. FedICON
[11] employs contrastive learning to adapt models to diverse
client environments, but its high computational demands make
it impractical for resource-limited clients. ATP [7] introduces
client-specific adaptation by adjusting module-specific adap-
tation rates. However, it assumes static test-time distributions
and does not explicitly encourage inter-client knowledge shar-
ing, which could enhance robustness by leveraging insights
from clients with similar data distributions.

Other methods, such as FedTHE+ [12], improve personal-
ization and adaptivity by ensembling a global generic classifier
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Fig. 1: Illustration of the FedCTTA framework. The server aggregates models received from all the clients based on euclidean
distance of outputs probability distribution, then distributes the personalized aggregated models back to the clients for the next
round. This process continues iteratively to adapt the models collaboratively across all clients. The figure demonstrates both
client-to-server communication (model updates) and server-to-client communication (aggregated model distribution).

and a local personalized classifier in a two-head FL model.
However, its performance declines when clients encounter
vastly different out-of-distribution data, as combining en-
semble classifiers into a more generic global classifier may
lead to suboptimal generalization. More recently, FedTSA
[13] introduced a collaboration mechanism using temporal-
spatial correlations based on local feature means, allowing
clients with similar data distributions to improve personalized
model aggregation. However, this method introduces privacy
concerns since sharing local feature statistics risks sensitive
data leakage through reconstruction. Additionally, FedTSA
requires server-side learning (6.2 millions parameters) during
adaptation, increasing computational complexity. The reliance
on storing local feature means in a memory bank also poses
scalability challenges, as memory demands grow with the
number of clients and training steps.

To address these limitations, we propose Federated Con-
tinual Test-Time Adaptation (FedCTTA), a framework de-
signed to enable efficient and privacy-preserving adaptation
in federated settings. Unlike existing approaches that rely
on sharing local feature means in the server side, FedCTTA
avoids direct feature sharing, mitigating privacy risks while
facilitating continual adaptation. FedCTTA operates by lever-
aging entropy minimization or updating batch normalization
statistics at each client for local test-time adaptation, ensuring
model confidence in evolving target distributions. Instead of
relying on stored feature statistics, we incorporate similarity-
aware aggregation through functional similarity [14], where
the server estimates collaborative relationships between par-
ticipating clients based on client model outputs over a set
of randomly generated noise samples. This allows adaptive

knowledge sharing while preserving data privacy. Our ap-
proach is computationally efficient, as it eliminates the need
for additional training on the server side and reduces the
memory footprint by avoiding persistent storage of client-
specific embeddings. FedCTTA seamlessly integrates contin-
ual adaptation with federated learning, ensuring both domain-
aware collaboration and robust model generalization without
introducing excessive communication or storage overhead.
FedCTTA outperforms existing methods under varying degrees
of temporal and spatial heterogeneity. It achieves 66.50% and
63.39% accuracy under the NIID setting, and 67.78% and
64.52% under the IID setting on CIFAR10-C and CIFAR100-C
dataset, respectively in TTA-bn method. In contrast, FedTSA
achieves 66.19% and 62.93% (NIID), as well as 67.51%
and 63.70% (IID). FedCTTA ensures higher accuracy while
preserving privacy in decentralized settings.

Our key contributions are as follows:

• We introduce a similarity-aware aggregation technique in
federated learning based on functional similarity, where
the server calculates collaboration relationships between
clients by comparing the outputs of their models over
randomly generated noise samples.

• Unlike prior work [12], [13], FedCTTA does not store
or share local feature embeddings, ensuring data security
and mitigating privacy risks.

• Our method eliminates the need for server-side training
during adaptation, significantly reducing computational
complexity.

• By avoiding storage of feature means across federated
rounds, FedCTTA maintains a constant memory footprint,
making it scalable even as the number of clients or



training rounds increases.

II. RELATED WORKS

A. Federated Learning
Federated learning is a decentralized approach to training

machine learning models while keeping data localized, thereby
addressing privacy and security concerns. FedAvg [10] ag-
gregates client models into a global one, while FedAvg+FT
further fine-tunes it on local data for personalization. FedProx
[15] introduces regularization to handle client data heterogene-
ity, and FedAVGM [16] incorporates momentum for better
aggregation. Li et al. [15] proposed using a globally shared
dataset to mitigate performance degradation in non-IID data
settings, improving model accuracy by up to 30% on skewed
datasets like CIFAR-10. Zhao et al. [17] introduced FedProx,
an extension of FedAvg, to handle statistical and system
heterogeneity. FedAMP [18] fosters collaboration between
clients with similar data, whereas MOON [19] refines local
training by leveraging model representation similarity. pFedSD
[20] enables clients to distill knowledge from past personalized
models, and pFedGraph [21] constructs a collaboration graph
based on model similarities. LDAWA [22] improves aggrega-
tion by considering angular divergence, while FedTSA [13]
utilizes temporal-spatial attention to capture both intra-client
and inter-client correlations.

B. Test Time Adaptation
Test-Time Adaptation (TTA) methods enable models to

adapt to distribution shifts without access to source data.
TENT [23] minimizes entropy by updating BatchNorm param-
eters, achieving state-of-the-art results on corrupted datasets
like ImageNet-C with efficient online updates. DUA [24] ex-
tends this by dynamically adjusting BatchNorm statistics using
minimal unlabeled test data, improving real-time adaptation
in scenarios like autonomous driving. EATA [25] mitigates
catastrophic forgetting and noisy updates through entropy-
based sample selection and a Fisher regularizer. CoTTA [6] en-
hances adaptation in non-stationary environments with weight-
averaged pseudo-labeling and stochastic restoration of source
weights to maintain long-term knowledge. These approaches
demonstrate diverse strategies for improving TTA efficiency
and robustness across various applications.

C. Federated Test Time Adaptation
Adaptive Test-Time Personalization (ATP) [7] learns

module-specific adaptation rates based on client distribu-
tion shifts. Clients simulate unsupervised adaptation during
training, refining rates to enhance performance on unseen,
unlabeled data. FedTHE+ [12] ensembles global and lo-
cal classifiers for robust test-time personalization and per-
forms unsupervised fine-tuning, improving accuracy across in-
domain (ID) and out-of-domain (OOD) distributions. FedI-
CON [11] uses contrastive learning to capture invariant knowl-
edge from inter-client heterogeneity during training and self-
supervision for smooth test-time adaptation, tackling intra-
client heterogeneity. While leveraging inter-client heterogene-
ity to address test-time shifts, FedICON requires extensive

contrastive learning, which may be computationally intensive
for resource-constrained clients. Xu et al. [26] proposed Fed-
Cal, a lightweight framework that performs test-time classifier
calibration using estimated label priors from global model
predictions. FedCal handles label shifts efficiently without
extra labeled data, ensuring flexibility for unseen clients.

III. METHODOLOGY

A. Problem Definition

Continual test-time adaptation (TTA) addresses the chal-
lenge of adapting models to sequentially arriving, non-
stationary target domains without access to source data. In
federated settings, where clients observe distinct or overlap-
ping domains that evolve over time, this becomes even more
challenging.

We consider a federated system with N clients, C =

{C1, C2, . . . , CN}, each receiving a data stream D(i)
t over

time. The objective is to adapt the client models θ while
preserving privacy and preventing catastrophic forgetting, en-
suring robust performance despite evolving data distributions.

B. Local Test-time Adaptation: Entropy Minimization

In the client side, we explore two approaches for continual
Test-Time Adaptation (TTA): (1) Fine-tuning all model pa-
rameters via entropy minimization, and (2) Updating only the
batch normalization (BN) layer statistics (mean and variance).

In the first approach, entropy minimization is employed to
align the feature distributions with evolving target domains.
For an input x ∈ D(i)

t , the entropy H(p) is defined as:

H(p) = −
K∑

k=1

pk log(pk), (1)

where p = fθi(x) is the predicted probability vector, and K
is the number of classes. The entropy minimization objective
for client Ci is given by:

Lent =
1

|D(i)
t |

∑
x∈D(i)

t

H(fθi(x)). (2)

The model parameters θ are updated to minimize Lent
via gradient descent. Minimizing Lent encourages confident
predictions (low uncertainty), facilitating feature alignment
with the target domain.

In the second approach, only the running mean µ, variance
σ2, and scale/shift parameters γ and β of the BN layers are
updated for each incoming data stream:

µnew
i = (1− α)µold

i + α · E
x∼D(i)

t
[x], (3)

σ2,new
i = (1− α)σ2,old

i + α · Var(x ∼ D(i)
t ), (4)

where α is the momentum parameter, E[·] represents the
batch mean, and Var[·] denotes the batch variance.

By combining BN statistics updates and full parameter
updates through entropy minimization, both methods enable



TABLE I: Performance comparison of various federated learning methods with our proposed FedCTTA on CIFAR10-C and
CIFAR100-C datasets. We evaluate all methods under two TTA setups: TTA-Grad, where all model parameters are updated
during adaptation, and TTA-BN, where only batch normalization layers are updated.

NIID IID

Method CIFAR10-C CIFAR100-C CIFAR10-C CIFAR100-C

TTA-grad TTA-bn TTA-grad TTA-bn TTA-grad TTA-bn TTA-grad TTA-bn

No-Adapt 58.47±0.19 58.61±0.17 30.22±0.12 30.22±0.12 58.64±0.22 58.55±0.21 30.22±0.12 30.22±0.12
Local 63.82±0.31 64.65±0.29 52.85±0.32 55.99±0.34 63.96±0.33 64.79±0.31 52.94±0.31 56.05±0.34
FedAvg 61.15±0.24 61.45±0.23 51.63±0.17 57.13±0.43 66.12±0.26 67.41±0.27 62.54±0.31 63.96±0.31
FedAvg+FT 63.82±0.27 61.45±0.23 47.83±0.58 57.13±0.43 63.79±0.30 67.41±0.27 61.72±0.59 63.96±0.31
FedProx 61.68±0.22 61.45±0.23 53.00±0.38 57.13±0.43 66.12±0.24 67.41±0.27 62.33±0.67 63.96±0.31
FedAvgM 61.50±0.25 61.37±0.19 52.31±0.46 57.13±0.43 63.60±0.28 67.41±0.27 54.66±0.27 63.96±0.31
MOON 61.58±0.23 61.45±0.23 54.26±0.27 57.13±0.43 66.05±0.25 67.41±0.27 62.40±0.23 63.96±0.31
pFedSD 61.31±0.21 61.45±0.23 53.33±0.37 57.13±0.43 66.14±0.26 67.41±0.27 62.32±0.33 63.96±0.31
pFedGraph 62.38±0.26 64.21±0.25 57.01±0.38 58.73±0.38 66.10±0.29 64.42±0.28 62.48±0.30 58.75±0.63
LDAWA 61.85±0.23 61.45±0.23 53.61±0.33 57.13±0.43 65.92±0.26 67.41±0.27 62.37±0.41 63.96±0.31
FedTSA 63.39±0.27 66.19±0.26 58.03±0.38 62.93±0.29 66.29±0.28 67.51±0.27 62.62±0.36 63.70±0.34
FedCTTA 66.23±0.28 66.50±0.27 64.81±0.29 63.39±0.28 66.64±0.29 67.78±0.28 64.15±0.28 64.52±0.28

domain-specific adaptation. This allows each client to locally
adjust its model to the test domain, improving accuracy,
mitigating catastrophic forgetting, and ensuring privacy in
federated settings.

C. Similarity-Aware Aggregation
To facilitate efficient collaboration, model aggregation on

the server side leverages the functional similarity [14] i.e.,
similarity of output behavior or probability distributions across
clients. Clients exposed to similar domains contribute more
to each other’s updates while preserving data privacy. Since
clients cannot share their data, a set of noise data points,
Dnoise = {zi}Mi=1, is randomly generated and used as a
reference dataset. In the server, these random noise samples
are passed to each client as input to compute similarities in
output logits.The similarity between clients is computed based
on several methods such as the cosine similarity, cross entropy,
negative Euclidean distance between their logits for the ran-
dom noise data points. Among them, we empirically found
that euclidean distance performs the best in this framework,
shown in Table IV.

For client i, the logits for a random noise sample z are
represented as fθi(z). The similarity between clients i and j
is computed using the negative Euclidean distance between
their mean logits:

Dij = −∥µi − µj∥2, (5)

where µi and µj are the mean logits over the random noise
dataset:

µi =
1

M

M∑
k=1

fθi(zk), µj =
1

M

M∑
k=1

fθj (zk). (6)

A higher (less negative) Dij indicates greater similarity
between clients. To derive collaboration weights, the pairwise
distances Dij are normalized using the softmax function Cij

and the server performs weighted aggregation based on Cij ,
and each client updates its local model accordingly:

θnew
i =

K∑
j=1

exp(Dij)∑K
k=1 exp(Dik)

θj , (7)

where Cij represents the contribution of client j to client
i’s aggregation, and K is the total number of clients. θj
denotes the parameters of client j’s model. This approach
fosters domain-aware collaboration by prioritizing updates
from similar clients, improving adaptation and continuous
learning in federated settings.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

1) Datasets and Setup: We evaluate our proposed ag-
gregation method on two standard corruption benchmarks:
CIFAR10-C and CIFAR100-C, where a model trained on
CIFAR-10 and CIFAR-100, respectively, is adapted to their
corrupted versions. These datasets are constructed by applying
15 distinct corruption types at five severity levels to the
test and validation images of the original CIFAR datasets.
Consistent with prior work, we report the average accuracy
across all corruption types and clients at the highest severity
level (severity 5). For CIFAR-100 to CIFAR100-C adaptation,
we utilize a pretrained ResNeXt-29 model obtained from
the Robustbench benchmark [27], while for CIFAR10-C, we
employ a pretrained ResNet-8 [28]. To simulate a dynamically
evolving test distribution, we progressively alter the corruption
type at severity 5 over time. The test data is distributed among
20 clients to emulate a federated learning (FL) setting with
decentralized data. Each client processes streaming test data
in batches of 10, experiencing sequences of distribution shifts.

Test-Time Adaptation (TTA) methods aim to improve the
robustness of a pretrained model when handling unlabeled
test data. One approach, TTA-bn, adjusts batch normalization
(BN) statistics to match the test distribution, as demonstrated
by NORM [29] and DUA [24], without requiring gradient
computation. In contrast, TTA-grad methods [6], [23] adapt



TABLE II: Detailed performance comparison under spatial IID and temporal heterogeneity using the TTA-bn method.
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Source 37.30 38.44 26.08 28.99 33.92 27.44 30.21 34.53 32.89 10.63 36.46 23.53 37.51 41.43 43.70 30.54
Local 69.76 69.81 63.21 68.69 61.40 63.92 66.58 67.14 67.44 55.35 71.16 39.68 64.93 70.25 71.58 64.72

FedAvg 72.28 72.46 66.31 71.08 64.22 66.45 69.61 70.03 69.34 58.32 73.60 42.84 68.34 72.92 74.55 67.49
pFedGraph 68.40 69.45 62.88 68.35 61.48 63.82 65.72 66.70 66.57 55.56 70.37 40.52 65.14 69.28 70.96 64.34

FedTSA 72.56 72.72 66.06 71.13 64.25 66.35 69.39 70.10 69.66 58.74 73.61 42.61 68.47 72.98 74.69 67.55
FedCTTA 73.21 73.04 66.27 71.91 64.64 66.32 69.58 70.24 70.38 57.57 74.20 41.93 68.16 73.72 75.00 67.74

C
IF

A
R

10
0-

C

Source 14.05 16.64 34.76 41.60 19.35 38.15 43.32 36.48 27.63 20.96 54.91 17.24 35.02 11.45 41.73 30.22
Local 51.59 53.02 50.26 65.13 50.77 63.23 65.07 58.10 58.17 51.10 66.70 61.25 56.67 59.98 51.57 57.51

FedAvg 57.33 58.60 56.74 69.07 57.51 68.94 70.92 64.29 64.19 57.44 72.40 67.36 63.70 66.33 57.56 63.50
pFedGraph 52.05 53.42 50.48 65.60 51.19 63.61 65.49 58.39 58.64 51.39 67.08 61.64 57.14 60.46 52.06 57.91

FedTSA 57.56 58.75 57.23 69.73 56.27 69.18 71.05 64.33 64.60 56.44 73.10 67.77 63.30 66.58 58.21 63.61
FedCTTA 56.90 59.58 57.06 72.12 58.47 70.04 71.84 65.32 65.66 58.27 74.34 68.41 64.29 67.32 58.97 64.57

the model using backpropagation with self-supervised losses.
Our proposed method focuses on fostering inter-client collab-
oration to share knowledge across clients and is orthogonal to
the TTA strategies employed by individual clients. We evaluate
our approach under both TTA-bn and TTA-grad settings for
each dataset. For TTA-grad, we adopt entropy minimization as
the local adaptation strategy, optimizing with SGD optimizer
using a learning rate of 1.0× 10−5.

2) Baselines: We compare our proposed method with Fe-
dAvg and other regularization-based FL methods, including
FedAvg+FT, FedProx, FedAvgM, MOON, and pFedSD,
which we have adapted for test-time adaptation. Additionally,
we evaluate our proposed method alongside other personalized
federated learning (PFL) and test-time adaptation (TTA) meth-
ods. pFedGraph [21] constructs a collaboration graph based
on model similarities and dataset size to enhance collaboration
at the server side. LDAWA [22] aggregates model weights by
measuring angular divergence between a client’s model and
the global model and adjusting the aggregation accordingly.
FedTSA [13] leverages a temporal-spatial attention module to
capture both intra-client temporal correlations and inter-client
spatial correlations.

3) Spatial and Temporal Heterogeneity: To quantify het-
erogeneity in our experimental setup, we adopt the notions of
temporal heterogeneity and spatial heterogeneity as defined
in [13]. These metrics characterize the distribution shifts
encountered by clients during continual test-time adaptation.

Spatial Heterogeneity: Spatial heterogeneity at time t,
denoted as SHt, measures the diversity of data distributions
among clients:

SHt =
Ncls

N
(8)

where Ncls is the number of client clusters with consistent
distribution shifts, and N is the total number of clients. Higher
SHt values indicate greater heterogeneity, with SHt = 1
signifying unique distribution shifts for all clients.

Temporal Heterogeity: Temporal heterogeneity for the i-th
client, denoted as THi, measures the frequency of distribution

changes in streaming data:

THi =
Tcon

T
(9)

where Tcon is the total duration of time slots with consistent
distribution shifts, and T is the total duration of all time slots.
Higher THi values indicate greater heterogeneity, with THi =
1 signifying a distinct distribution shift in every time slice.

B. Performance Analysis

We assessed the performance of our method in both TTA-
grad and TTA-bn settings under two distinct scenarios, with
data distributed across 20 clients. In the first scenario, we
simulated spatial heterogeneity (SHt = 0.2) with 4 clusters,
which we refer to as NIID, while the second scenario involved
very low spatial heterogeneity (SHt = 0.05) with a single
cluster, referred to as IID. For both scenarios, temporal hetero-
geneity (THi) was kept constant at 0.02. Since TTA-bn does
not require backward optimization, while many state-of-the-
art methods, such as FedProx, MOON, pFedSD, and LDAWA,
rely on gradient updates, the results from these methods under
TTA-bn are consistent with those of FedAvg.

As shown in Table I, the baseline (No-adapt) struggles
with corrupted datasets, achieving low accuracy across all
settings, underscoring the challenges of distribution shifts in
federated learning, particularly under non-IID scenarios. Local
adaptation strategies improve performance in IID settings
but remain inadequate against severe shifts. While FedAvg
and other regularization-based methods such as FedProx, Fe-
dAvgM, pFedSD, and MOON perform well in IID settings,
their effectiveness declines in NIID scenarios, where person-
alized federated learning (PFL) methods like FedTSA and
pFedGraph achieve better results.

FedTSA and pFedGraph show notable improvements over
previous methods, particularly under the NIID setting. They
outperform FedAvg and FedProx in both CIFAR10-C and
CIFAR100-C, highlighting the importance of inter-client col-
laboration for improving performance under corrupted con-
ditions. Our method outperforms all other approaches across



TABLE III: The experimental setup and performance in the NIID scenario, where Clients 1–4, Clients 5–7, and Clients 8–10
share similar data distributions throughout the entire lifecycle, with a total of 10 clients.
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(d) CIFAR100-C

Fig. 2: Comparison of CIFAR-10 and CIFAR-100 under differ-
ent conditions. Greater spatial heterogeneity, indicating greater
distribution differences among clients, leads to performance
degradation across all methods, but FedCTTA consistently out-
performs. Similarly, increasing temporal heterogeneity, caus-
ing frequent distribution shifts, further impacts performance.

all settings in both CIFAR10-C and CIFAR100-C, achieving
the highest accuracy. This demonstrates the effectiveness of
our method in handling both spatial and temporal distribution
shifts in federated learning scenarios.

C. Robustness Under Spatial and Temporal Heterogenity

To assess the robustness of our proposed method, we
conduct experiments on CIFAR10-C and CIFAR100-C un-
der varying degrees of spatial and temporal heterogeneity.
Specifically, when analyzing spatial heterogeneity (SH), we fix
temporal heterogeneity (THi) at 0.02, and conversely, when
varying THi, we maintain SHt at 0.2 to isolate the impact of
each factor independently.
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(c) FedCTTA

Fig. 3: The evolution of the collaboration matrix across
federated rounds for three methods: pFedGraph, FedTSA, and
our proposed FedCTTA. In FedCTTA, clients with similar data
distributions naturally form clusters in aggregation weighting.

As shown in Figure 2a and 2c, our method consistently
outperforms the baselines across different levels of spatial
heterogeneity. While all methods experience a decline in
accuracy as heterogeneity increases, FedAvg suffers the most
significant drop, indicating its poor adaptability to spatially
non-iid data. Our method demonstrates strong resilience, with
only a minor performance decline, highlighting its ability to



effectively handle diverse client distributions.
As illustrated in Figure 2b and 2d, our method also exhibits

strong robustness against temporal heterogeneity, outperform-
ing traditional and personalized federated learning baselines
in most cases. The core strength of our approach lies in
its adaptive aggregation strategy, which leverages temporal
similarity between clients to facilitate more effective inter-
client collaboration. When temporal heterogeneity is low, dis-
tribution shifts occur gradually, allowing our method to retain
and utilize historical knowledge more effectively. However,
as temporal heterogeneity increases, abrupt shifts in data
distribution diminish the relevance of past information. In
case of high temporal heterogeneity (THi = 1), our method
performs comparably to FedTSA.
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Fig. 4: Time-varying collaboration matrix for Client 1 of
Our FedCTTA method in the NIID setting. Throughout all
rounds, Clients 1–4 observe the same data distribution. At 8th
distribution shift, Clients 8–10 also observe data from the same
domain as Clients 1–4, and therefore have higher similarity
with Client 1.

D. Collaboration Relationship Analysis

Figure 3 illustrates the evolution of the collaboration ma-
trix across federated rounds for three methods: pFedGraph,
FedTSA, and our proposed FedCTTA. The collaboration ma-
trix quantifies the aggregation weights between clients, where
higher values indicate stronger collaboration. This case study
evaluates 10 clients on CIFAR10-C, divided into three groups
based on the sequence of distribution shifts: Group 1 (Clients
1-4), Group 2 (Clients 5-7), and Group 3 (Clients 8-10).
In Figure 3a, pFedGraph exhibits a scattered collaboration
pattern across federated rounds, lacking structured inter-client
relationships. Figure 3b shows that FedTSA initially relies on
self-updates, with limited collaboration emerging over time,
but without well-defined client clusters. In contrast, Figure
3c demonstrates that FedCTTA naturally clusters clients with
similar data distributions, fostering structured and adaptive
collaboration. Figure 4 further illustrates the time-varying
collaboration matrix for Client 1 in this setup. Throughout
all rounds, Clients 1–4 observe the same data distribution,
forming a distinct cluster. At the 8th distribution shift, Clients
8–10 begin observing data from the same domain as Clients

1–4, leading to an increase in similarity with Client 1. These
results highlight FedCTTA’s effectiveness in leveraging inter-
client similarities, where collaboration is determined based on
similarity between output logits evaluated on random noise
samples. A detailed quantitative comparison under different
distribution shifts is provided in Table III.

V. ABLATION STUDY
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Fig. 5: (a) Gradual performance decline observed as aggrega-
tion interval increases across federated rounds. (b) Both very
high and very low batch sizes impact performance, affecting
generalization and stability. A balanced batch size is ideal.

A. Effect of Aggregation Frequency

We analyze the impact of aggregation frequency on test
accuracy for CIFAR10-C and CIFAR100-C using the TTA-bn
method. As shown in Figure 5a, increasing the aggregation in-
terval negatively affects performance across federated rounds.
A higher aggregation interval (e.g., 50) leads to reduced accu-
racy, suggesting that frequent model updates and collaboration
between clients are crucial for maintaining performance.

B. Effect of Batch Size

Figure 5b illustrates the effect of batch size on accuracy.
We observe that both very low (10) and very high (100) batch
sizes result in suboptimal performance. A moderate batch size
(20 or 50) achieves better results. In the federated setup, each
client receives a smaller number of samples per domain, and
when the batch size is too large, more frequent distribution
shifts occur, leading to reduced performance. Conversely, a



very small batch size can cause unstable updates, impacting
accuracy. This trend is consistent across both datasets.

TABLE IV: Comparison of test accuracy using distance mea-
sures for output logits and feature embeddings on CIFAR10-C
dataset with the TTA-grad method under the NIID setting.

Data Output Logit (Acc. %) Feature (Acc. %)

Euclid KL-div CE Cosine Euclid Cosine

Random Noise 66.19 61.62 61.60 61.62 62.07 61.63
Selected (CIFAR) 65.92 61.65 61.64 61.63 61.80 61.63

C. Ablation on Distance Metric and Auxiliary Dataset

Table IV presents a comparison of test accuracy using dif-
ferent distance measures for output logits and feature spaces,
evaluated on random noise and selected CIFAR samples from
the CIFAR10-C dataset, with the TTA-grad method under the
NIID setting. Our analysis indicates that using random noise
data to derive output logits for measuring similarity between
client models, along with negative Euclidean distance as the
similarity metric to construct the collaboration matrix for per-
sonalized model aggregation, achieves the best performance.

VI. CONCLUSION

We proposed FedCTTA, a privacy-preserving and effi-
cient framework for continual test-time adaptation (CTTA)
in federated learning (FL). By leveraging similarity-aware
aggregation without sharing feature embedding, FedCTTA
ensures adaptive knowledge transfer for different data distri-
bution. It also integrates entropy minimization for confident
adaptation to evolving target distributions. Experimental re-
sults on CIFAR10-C and CIFAR100-C show that FedCTTA
outperforms existing methods in accuracy, robustness, and
scalability, even under spatial and temporal heterogeneity.
With its low computational overhead and constant memory
footprint, FedCTTA is a promising solution for real-world FL
applications requiring continual adaptation. Future work could
extend FedCTTA to incorporate state of the art CTTA methods
and evaluate on more dynamic real-world datasets.
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