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Abstract. Federated learning (FL) enables privacy-preserving model
training across decentralized clients with diverse and non-IID data. How-
ever, adapting models at test time remains challenging, particularly un-
der class imbalance and domain shifts. Traditional test-time adaptation
(TTA) approaches fail in such settings due to biased batch normalization
statistics dominated by majority classes. We propose FedBBN, a fed-
erated TTA framework that incorporates Balanced Batch Normalization
(BBN) to mitigate prediction bias by treating each class equally during
normalization. FedBBN enables client-side unsupervised adaptation and
introduces a class-aware aggregation strategy at the server to preserve
model robustness across heterogeneous clients. Our proposed method
operates without access to labels or raw data at test time, yields person-
alized models per client, and supports secure aggregation for privacy. Ex-
periments on CIFAR-10-C and CIFAR-100-C benchmarks demonstrate
that FedBBN significantly improves robustness and minority-class per-
formance over conventional federated and local adaptation baselines.

Keywords: Federated Learning · Test-Time Adaptation · Class Imbal-
ance · Balanced Batch Normalization.

1 Introduction

Federated Learning (FL) enables decentralized model training across clients
while maintaining data privacy by keeping raw data local. This paradigm is
increasingly important in scenarios like mobile computing, healthcare, and IoT,
where privacy, personalization, and data distribution shifts are all critical consid-
erations. However, FL systems face several fundamental challenges, particularly
at test time, where models must generalize to unseen and often unlabeled client
data streams with potentially severe class imbalance and domain shifts.

Standard test-time adaptation (TTA) techniques, which adjust model param-
eters during inference using unlabeled test data, have shown promise in address-
ing distribution shifts. A common approach is to update Batch Normalization
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Fig. 1. Overview of FedBalanceTTA.

(BN) layers using the statistics of incoming batches. However, this becomes prob-
lematic when data is class-imbalanced: the BN statistics become skewed toward
majority classes, leading to biased normalization and degraded performance on
minority classes. This issue is especially pronounced in FL, where each client
may exhibit drastically different data distributions.

To address this, we propose FedBBN, a federated TTA framework that in-
tegrates Balanced Batch Normalization (BBN) at the client level and introduces
a novel class-aware aggregation strategy at the server. BBN computes normal-
ization statistics on a per-class basis and averages them equally across classes,
thereby correcting class imbalance without access to ground-truth labels. Clients
adapt their models in an unsupervised manner using pseudo-labels, while the
server aggregates updates in a way that accounts for inter-client class skew, en-
suring global model robustness and fairness. Our framework operates entirely
under standard FL privacy constraints and produces personalized models that
adapt to each client’s local distribution without compromising data security.

In summary, the key contributions of this work are:

– We introduce a federated test-time adaptation framework that incorporates
Balanced Batch Normalization (BBN) to mitigate prediction bias from
class imbalance without requiring labels.

– We develop an unsupervised client-side adaptation procedure using
BBN and pseudo-label-driven loss functions that personalize models under
both domain and label shifts.

– We propose a class-aware aggregation strategy that adjusts server-side
weighting based on clients’ label distribution skew, enhancing robustness and
fairness in global model updates.

– We ensure privacy-preserving personalization by restricting all sensitive
operations (e.g., per-class stats) to the client side and using secure aggrega-
tion for federated updates.
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2 Related Work

2.1 Class Imbalance in Federated Learning

Federated Learning (FL) often encounters challenges due to non-IID data dis-
tributions and class imbalance across clients. To address these issues, several
methods have been proposed: Fed-GraB [5] introduces a self-adjusting gradi-
ent balancer that re-weights each client’s gradient based on a global long-tail
prior, enhancing minority-class accuracy. GBME [7] constructs class-prior prox-
ies from accumulated client gradients, enabling global loss re-balancing without
compromising data privacy.

In [9], CReFF identifies biased classifiers as a primary factor for poor perfor-
mance under heterogeneous long-tailed data. It retrains the classifier on federated
features, achieving performance comparable to centrally retrained models. Bal-
anceFL [13] addresses client imbalance through a local update scheme, ensuring
each client’s model behaves as if trained on a uniform class distribution.

FL-FCR employs calibration weighting and resampling, integrating a cali-
brated loss during client training and calibration-based resampling at the server,
aligning training with true class frequencies [6]. Li et al. [2] propose a probability-
corrected loss and shared class prototypes to align model outputs across hetero-
geneous clients, effectively handling both balanced and imbalanced global data.

2.2 Test-Time Adaptation

Test-Time Adaptation (TTA) methods adapt pre-trained models during infer-
ence to handle domain shifts or corrupted inputs:

TENT performs entropy minimization on each test batch, updating batch
normalization statistics and channel-wise affine parameters online to maximize
output confidence [11]. CoTTA maintains a weight-averaged teacher model and
applies strong augmentation to stabilize pseudo-labels. It also stochastically re-
sets a fraction of parameters to the source pre-trained values to prevent catas-
trophic forgetting [12]. RoTTA introduces a Practical TTA setting with tem-
porally changing distributions and correlated sampling. It incorporates robust
batch normalization, a category-balanced memory bank, and a time-aware reweight-
ing teacher-student model for adaptation [14]. ROID addresses challenges of
universal online TTA by applying diversity weighting, continuously ensembling
the source and adapted models, and performing adaptive prior correction on
predictions [4].

2.3 Bridging TTA with federated or distributed learning

ATP formalizes Test-Time Personalized Federated Learning (TTPFL), where
each client locally adapts the global model without labels. It learns adaptive up-
date rates per network module based on cross-client shift information [1]. DynFed
uses Adaptive Rate Networks to generate client-specific adaptation rates, refin-
ing each client’s update rate without sharing raw data and providing convergence
guarantees [8].
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TTA-FedDG leverages test-time adaptation for federated domain generaliza-
tion. It mixes features via fast reordering during local training and applies a
contrastive teacher-student scheme with selective strong pseudo-labeling at test
time [3]. Shao et al. build a federated face anti-spoofing system where clients
collaboratively train a general model, and each device minimizes the model’s
prediction entropy on its new attack data during test time [10].

These methods collectively advance the robustness and adaptability of FL
models in the presence of class imbalance and domain shifts.

3 Methodology

We propose FedBBN, a federated test-time adaptation (TTA) framework that
addresses class imbalance and domain shift in decentralized settings. FedBBN
operates by enabling each client to adapt its model locally using Balanced Batch
Normalization (BBN), while a central server aggregates updates in a manner
that is robust to inter-client skew.

The core idea is to replace traditional Batch Normalization (BN) layers with
a balanced variant that neutralizes the dominance of majority classes in normal-
ization statistics. Given unlabeled test-time data, each client uses pseudo-labels
to compute class-wise statistics and perform local adaptation in a fully unsuper-
vised manner.

Let Di = {xj}nj=1 denote the test data stream for client i, and let fθ be the
model with parameters θ distributed from the central server. Each client replaces
every BN layer in fθ with a Balanced BN layer and performs adaptation using
the incoming stream.
Balanced Batch Normalization (BBN):

At inference time, each client uses the current model to generate pseudo-
labels ŷj for each sample xj . Let C be the number of known classes. For each
class c ∈ {1, . . . , C}, the feature vectors belonging to class c are grouped as
Xc = {xj | ŷj = c}. The per-class mean and variance are computed as:

µc =
1

|Xc|
∑
x∈Xc

x, σ2
c =

1

|Xc|
∑
x∈Xc

(x− µc)
2 (1)

Rather than computing global statistics based on the entire batch (which
would be skewed), BBN computes an unweighted average over all classes:

µBBN =
1

C

C∑
c=1

µc, σ2
BBN =

1

C

C∑
c=1

σ2
c (2)

The input feature x is then normalized using these balanced statistics as:

BN balanced(x) = γ · x− µBBN√
σ2
BBN + ϵ

+ β (3)
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where γ and β are learnable affine parameters. If a class c has no samples
in the batch, the client can either reuse the previous statistics for that class or
interpolate using global estimates.
Local Adaptation:

Using BBN, each client performs test-time adaptation on its local data stream.
The model parameters are updated using unsupervised objectives such as en-
tropy minimization:

Lent = −
1

n

n∑
j=1

C∑
k=1

pθ(y = k|xj) log pθ(y = k|xj) (4)

Alternatively, clients can use confident pseudo-labeling:

Lpl = −
1

|H|
∑
j∈H

log pθ(y = ŷj |xj) (5)

where H = {j | maxk pθ(y = k|xj) > τ} is the set of high-confidence samples
and τ is a confidence threshold.

To prevent overfitting to noisy pseudo-labels, a regularization term can be
added using an anchor copy of the initial model:

Lreg = ∥θ − θ0∥22 (6)

The total loss is then:

Ltotal = Lent + λLreg (7)

where λ controls the strength of the regularization. Clients update their local
models using gradient descent on this objective.
Server Aggregation:

Once local adaptation is complete, each client i sends its model update ∆θi to
the server. To address inter-client class imbalance, we use a class-aware weighting
scheme. Let pi,c denote the estimated proportion of class c in client i’s pseudo-
labels. A client weight is computed as:

wi =
1

maxc pi,c + δ
(8)

where δ is a small constant to avoid division by zero. The global model is
then updated as:

θglobal ←
∑K

i=1 wi(θ0 +∆θi)∑K
i=1 wi

(9)

This downweights clients with highly imbalanced distributions and upweights
those with more balanced or minority-class data.
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To ensure robustness, the server may optionally apply coordinate-wise me-
dian or trimmed mean instead of simple weighted averaging. This protects the
global model from adversarial or noisy client updates.
Privacy Considerations:

Throughout the process, client privacy is preserved by keeping raw data and
per-class statistics local. Only model deltas (e.g., changes to weights and BBN
affine parameters) are transmitted. If desired, clients may apply secure aggrega-
tion protocols or add differentially private noise to histogram-based summaries
(such as class counts) to further obscure sensitive information.

FedBBN thus supports personalization, unsupervised adaptation, and privacy-
preserving federated updates, all while explicitly addressing the impact of class
imbalance on both client- and server-side learning dynamics.

4 Result and Discussion

4.1 Dataset

4.2 Experimental Setup

4.3 Qualitative Result

4.4 Quantitative Result

4.5 Discussion

5 Conclusion

We introduced FedBBN, a federated test-time adaptation framework that ad-
dresses class imbalance and domain shifts by leveraging Balanced Batch Nor-
malization. FedBBN enables unsupervised, privacy-preserving client-side adap-
tation and introduces a class-aware server aggregation strategy. Experiments on
benchmark datasets show that FedBBN improves robustness and minority-class
performance over existing methods. This makes it a practical and scalable solu-
tion for real-world federated learning scenarios with non-IID and unlabeled test
distributions.
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Table 1. Performance comparison across federated methods and TTA strategies under
different class imbalance ratios (δ). Total clients = 10, i.i.d setup

Fed Method TTA Method CIFAR-10 CIFAR-100
δ = 0.001 δ = 0.01 δ = 0.1 δ = 0.001 δ = 0.01 δ = 0.1

FedAvg

Tent 19.50 37.05 43.48
CoTTA 23.77
ROID 21.94 43.14
RoTTA 64.96
Ours 65.56

FedProx

Tent
CoTTA
ROID
RoTTA
Ours

FedAvgM

Tent
CoTTA
ROID
RoTTA
Ours

pfedGraph

Tent
CoTTA
ROID
RoTTA
Ours

FedAmp

Tent
CoTTA
ROID
RoTTA
Ours
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Table 2. Performance comparison across federated methods and TTA strategies under
different class imbalance ratios (δ). Total clients = 10, i.i.d setup

Fed Method TTA Method CIFAR-10 CIFAR-100
δ = 0.0 δ = 1 δ = 5 δ = 0.0 δ = 1 δ = 5

FedAvg

Tent 19.50 37.05 43.48
CoTTA 23.77
ROID 21.94 43.14
RoTTA 64.96
Ours 65.56

FedProx

Tent
CoTTA
ROID
RoTTA
Ours

FedAvgM

Tent
CoTTA
ROID
RoTTA
Ours

pfedGraph

Tent
CoTTA
ROID
RoTTA
Ours

FedAmp

Tent
CoTTA
ROID
RoTTA
Ours

Table 3. Performance comparison under spatial heterogeneity and temporal IID.
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C
IF

A
R

10
-C

Source 37.30 38.44 26.08 28.99 33.92 27.44 30.21 34.53 32.89 10.63 36.46 23.53 37.51 41.43 43.70 30.54
Local 55.27 52.70 56.46 48.25 55.30 50.87 58.25 46.40 55.58 52.45 58.48 45.80 51.75 56.12 49.00 52.85

FedAvg 61.49 56.33 60.15 50.26 61.14 53.02 63.64 50.17 60.02 53.88 63.53 50.95 55.86 59.55 52.36 56.82
FedAMP 62.04 57.12 61.29 52.32 61.83 55.28 63.87 51.69 60.83 55.89 63.94 52.16 56.70 61.32 53.65 58.00

pFedGraph 61.66 56.41 61.01 51.87 61.18 54.44 63.70 51.60 60.23 55.17 63.44 52.42 56.46 60.22 53.56 57.56
FedTSA 62.16 57.59 61.72 52.58 61.91 55.36 63.96 50.87 61.33 56.67 64.36 51.37 57.15 61.78 53.23 58.14

Ours-v1(FM) 65.12

C
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Source 14.05 16.64 34.76 41.60 19.35 38.15 43.32 36.48 27.63 20.96 54.91 17.24 35.02 11.45 41.73 30.22
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FedAvg 52.14 43.19 63.30 48.91 53.90 49.31 65.61 46.71 54.31 49.38 61.93 45.47 51.57 57.00 56.34 53.27
FedAMP 62.04 57.12 61.29 52.32 61.83 55.28 63.87 51.69 60.83 55.89 63.94 52.16 56.70 61.32 53.65 58.00

pFedGraph 61.66 56.41 61.01 51.87 61.18 54.44 63.70 51.60 60.23 55.17 63.44 52.42 56.46 60.22 53.56 57.56
FedTSA 57.33 58.60 56.74 71.07 57.51 68.94 70.92 64.29 64.19 57.44 72.40 67.36 63.70 66.33 57.56 63.63

Ours
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Table 4. The experimental scenario and performance comparison of the case study.
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