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Abstract—Human Activity Recognition (HAR) in real-world
environments, particularly in crowded scenes, presents unique
challenges due to occlusions, viewpoint variations, and inter-
personal interference. Traditional approaches relying solely on
video or sensor modalities often struggle with robustness and
generalizability. To address this, we propose a novel multimodal
framework that integrates visual, textual, and wearable sensor
data for improved activity recognition. Our approach leverages
recent advancements in vision-language models (VLMs), particu-
larly Video-LLaVA [1], to enhance video understanding through
context-aware prompt engineering, and aligns this rich video
context with fine-grained sensor data using a computationally
efficient keyless attention mechanism. We validate our approach
on the challenging MMAct dataset [2], which includes 27 human
activities performed in crowded environments with synchronized
video and multi-sensor recordings, demonstrating superior per-
formance over unimodal and traditional fusion baselines.
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I. INTRODUCTION

Human Activity Recognition (HAR) is critical for appli-
cations such as surveillance, health monitoring, and smart
environments. In crowded and dynamic environments, video
data suffers from occlusion and ambiguity, while sensor data
lacks contextual understanding. Combining these modalities
can yield more robust and accurate recognition. This pa-
per proposes a unified framework that integrates contextual
video features from a vision-language model with fine-grained
motion features from wearable sensors, aligned through a
novel keyless cross-modal attention mechanism that efficiently
models inter-modal interactions without requiring explicit key
vectors.

II. METHODOLOGY

A. Modality-Specific Feature Extraction

Video Modality: We employ Video-LLaVA [1], a state-
of-the-art vision-language model, to extract semantically rich
video embeddings. Contextual prompts (e.g., “The person is
in a crowded office, possibly walking, sitting, or talking on the
phone”) are used to guide the model toward relevant semantics,
enhancing the model’s ability to disambiguate activities in
cluttered scenes.

Sensor Modality: Data from accelerometer, gyroscope, and
orientation sensors are processed using lightweight 1D CNNs
designed for efficient temporal feature extraction [3]. The
resulting embeddings capture precise motion characteristics
and complement the semantic video features.

B. Cross-Modal Alignment via Keyless Attention

To integrate semantic context from video and precise motion
features from sensors, we utilize a keyless attention mecha-
nism inspired by recent advances in multimodal learning. Let
v ∈ Rdv denote the video embedding from Video-LLaVA,
and S = [s1, s2, . . . , sn] ∈ Rn×ds be the sequence of sensor
embeddings extracted by the CNN.

The attention weights are computed as:

αi =
exp(v⊤Wsi)∑n
j=1 exp(v

⊤Wsj)
, (1)

where W ∈ Rdv×ds is a learnable projection matrix that aligns
the modalities into a shared latent space.

The aligned sensor representation is obtained by the
weighted sum:

a =

n∑
i=1

αisi. (2)

The final joint feature vector is the concatenation:

fjoint = [v∥a] ∈ Rdv+ds , (3)

where ∥ denotes concatenation.
This keyless attention mechanism effectively captures cross-

modal interactions without the computational overhead of
traditional key-value attention [4], [5], making it suitable for
real-time HAR in resource-constrained settings.

C. Contrastive Learning for Enhanced Cross-Modal Align-
ment

To improve the semantic alignment between video and
sensor modalities, we incorporate a multimodal contrastive
learning objective. Contrastive learning encourages embed-
dings of corresponding video and sensor data pairs to be close
in the joint embedding space, while pushing apart embeddings
of mismatched pairs. This promotes a more discriminative
and semantically consistent representation, which is especially
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Fig. 1. Illustration of the overall framework.

beneficial when modalities capture complementary informa-
tion.

Let {vi, si}Ni=1 denote a batch of N paired video and sensor
embeddings extracted by the Video-LLaVA and sensor CNN
encoders, respectively. We first normalize these embeddings
to unit length:

ṽi =
vi

∥vi∥
, s̃i =

si
∥si∥

. (4)

The similarity between a video embedding and a sensor
embedding is measured by the cosine similarity:

sim(ṽi, s̃j) = ṽ⊤
i s̃j . (5)

We define the contrastive loss using the InfoNCE formula-
tion [1]–[3] with temperature parameter τ > 0:

Lcontrast = − 1

2N

N∑
i=1

[
log

exp(sim(ṽi, s̃i)/τ)∑N
j=1 exp(sim(ṽi, s̃j)/τ)

+ log
exp(sim(s̃i, ṽi)/τ)∑N
j=1 exp(sim(s̃i, ṽj)/τ)

]
.

(6)

This loss pulls together matching video-sensor pairs (posi-
tive pairs) while pushing apart non-matching pairs (negatives)
within the batch, effectively aligning the modalities in a shared
semantic space.

By jointly optimizing the classification loss LCE and the
contrastive loss Lcontrast, the overall training objective be-
comes:

L = LCE + λLcontrast, (7)

where λ is a hyperparameter controlling the contribution of
the contrastive objective.

This multimodal contrastive learning strategy not only
captures the shared information between video and sensor
modalities but also helps to model unique and synergistic
information, as discussed in recent works [3]. It improves the
robustness and generalizability of the joint embedding space,
leading to better recognition accuracy in complex, crowded
environments.

D. Joint Feature Fusion and Classification

The joint feature vector fjoint is passed through a Trans-
former encoder [4] to model any residual modality interactions
and temporal dependencies inherent in the activity sequences.

The output is then fed into a Multi-Layer Perceptron (MLP)
classifier to predict the activity class:

ŷ = Softmax(MLP(Transformer(fjoint))). (8)

The model is trained end-to-end using the standard cross-
entropy loss:

LCE = −
C∑

c=1

yc log(ŷc), (9)

where C is the number of activity classes in MMAct, yc is
the ground truth label, and ŷc is the predicted probability for
class c.

III. EXPERIMENTS

We evaluate our approach on the MMAct dataset [2], which
contains synchronized video and wearable sensor recordings of
27 human activities performed in crowded environments. Our
method significantly outperforms unimodal baselines (video-
only and sensor-only) and traditional fusion methods such as
simple concatenation and late fusion.

Ablation studies demonstrate the effectiveness of:
• Context-aware prompt engineering in Video-LLaVA

for improved semantic video embeddings,
• Keyless attention for efficient and effective cross-modal

alignment,
• Transformer-based fusion for capturing temporal and

inter-modal dependencies,
• Contrastive learning for enhanced semantic alignment

and discriminative joint embedding space.
Qualitative analysis further confirms the robustness of our

model in handling occlusions and crowded scenes, where
unimodal methods often fail.

IV. CONCLUSION

We present a context-aware, prompt-driven, cross-modal
HAR framework that aligns video and sensor information
using a computationally efficient keyless attention mechanism.
This approach combines the semantic richness of vision-
language models with the precision of wearable sensor data,
improving recognition accuracy in complex, crowded envi-
ronments. The optional contrastive learning objective further
enhances cross-modal semantic alignment. Future work will
explore learnable prompt tuning, advanced temporal modeling,
and deployment on edge devices for real-time applications.
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