
When a Modality is Missing: A Cross-Modal
Recovery for Federated Multimodal Models

Md. Akil Raihan Iftee
Department of Computer Science and Engineering

Khulna University of Engineering & Technology, Bangladesh
iftee1807002@stud.kuet.ac.bd

I. ABSTRACT

Multimodal Federated Learning (MFL) enables col-
laborative training of models across decentralized clients,
each possessing local and private data with multiple
modalities. However, in real-world scenarios, clients
often suffer from missing modalities due to data col-
lection constraints, privacy concerns, or device limita-
tions. Existing solutions typically struggle with robust
performance when one or more modalities are absent,
especially under heterogeneous data availability across
clients. In this work, we propose a novel framework that
disentangles semantic components from multimodal fea-
tures to facilitate missing modality recovery in a feder-
ated setting. Specifically, our approach introduces image
feature decomposition into text-aligned and purely vi-
sual subspaces, a cross-modal mapper for reconstructing
missing text embeddings from images, and a diffusion-
based image generator for recovering missing image
modalities from text. Furthermore, we incorporate a
visual-linguistic memory retrieval mechanism to lever-
age high-confidence embeddings from previous train-
ing steps for zero-shot modality approximation during
inference. Our method preserves data privacy, requires
minimal communication overhead, and adapts flexibly
to different modality configurations.

II. INTRODUCTION

Federated Learning (FL) is a decentralized paradigm
that enables collaborative model training across multiple
clients without exchanging raw data. Its extension to the
multimodal domain—Multimodal Federated Learning
(MFL)—has opened new frontiers in privacy-preserving
learning across diverse modalities like text, image, and
audio. However, a key challenge in MFL is the missing
modality problem, where some clients may lack one
or more modalities due to hardware limitations, privacy
restrictions, or domain-specific constraints.

Recent studies have explored various techniques to
address this issue. Some propose prototype masking and
contrastive alignment to deal with incomplete modalities
across clients [1]. Others develop cross-model recon-
struction networks that adaptively map between modal-

ities [2], or design frameworks tailored to healthcare
scenarios with incomplete multimodal data [3]. Bench-
marking efforts like FedMultimodal [4] and model-
agnostic approaches such as contrastive representation
ensembles [5] further highlight the importance of robust
modality-incomplete learning.

Despite these advances, several limitations remain.
First, most approaches treat modality alignment globally,
ignoring the fine-grained semantic relationships within
features. Second, they often fail when no parallel modal-
ity data is available, limiting their flexibility. Third,
they lack mechanisms to recover rich modality-specific
features in a privacy-preserving and locally computable
way.

To address these gaps, we propose a novel disentan-
gled and generative framework for MFL with missing
modalities. Our contributions include:

• A disentangled representation learning approach
that splits image embeddings into text-aligned and
visual components using orthogonality constraints.

• A cross-modal mapper that reconstructs missing
text embeddings directly from disentangled image
features, enabling robust adaptation when text is
unavailable.

• A diffusion-based image generator that synthesizes
image features from text descriptions, supporting
clients without image modalities.

• A visual-linguistic memory retrieval (VLMR)
mechanism that enables zero-shot modality estima-
tion using high-confidence feature memories.

• A comprehensive federated pipeline integrating
these components under strict privacy preservation
and efficient communication protocols.

Our framework bridges the gap between local seman-
tic disentanglement and global federated coordination,
offering a robust, adaptive, and privacy-preserving solu-
tion to multimodal learning with missing modalities.

III. METHODOLOGY

A. Problem Setup

We consider a Federated Learning (FL) scenario
comprising a central server and a set of N distributed



clients C = {c1, c2, . . . , cN}, each possessing a private,
potentially incomplete multimodal dataset Di. In this
setup, raw data is never shared between clients and
server; only model parameters and latent representations
are communicated under strict privacy constraints.

Each client holds three types of elements: a text
modality xt, which may be absent; an image modality xi,
which may also be absent; and a class label y. Based on
their data availability, clients are categorized into three
groups: those with text only, those with image only, and
those with both modalities.

The goal is to collaboratively train a global multi-
modal classifier that performs robustly even when clients
possess only partial modalities, while preserving privacy
and ensuring efficient communication. This is achieved
by integrating local missing modality adaptation mech-
anisms with server-coordinated aggregation.

B. Client-Side Learning Pipeline

Each client implements a complete local pipeline for
encoding, disentangling, recovering missing modalities,
and classification. The steps are described below.

1) Multimodal Encoders: Each client independently
encodes the available modalities using pretrained en-
coders. Given a text input xt, the text encoder Et

produces an embedding vector ft ∈ Rd, while the image
encoder Ei processes the image input xi to produce an
embedding fi ∈ Rd′

:

ft = Et(xt), fi = Ei(xi) (1)

These latent feature vectors serve as inputs for subse-
quent disentanglement and recovery steps.

2) Image Feature Disentanglement: To disentangle
text-related semantics and purely visual cues from image
embeddings, each client decomposes fi into two orthog-
onal components: fi→t aligned with text semantics, and
fi→v capturing purely visual information:

Di(fi) = {fi→t, fi→v}, fi = fi→t + fi→v (2)

An orthogonality constraint is applied to ensure these
two components capture independent aspects of the
image:

Lorth =
∥∥f⊤

i→tfi→v

∥∥
2

(3)

This disentanglement allows for more effective cross-
modal mapping and fusion downstream.

3) Cross-Modality Mapping (Image to Text): In sce-
narios where the text modality is missing, clients recon-
struct a text embedding from the text-aligned component
of the image embedding. A mapping function Mit is
trained to transform fi→t into an estimated text embed-
ding f̂t:

f̂t = Mit(fi→t) (4)

The mapping is supervised by minimizing the alignment
loss between the reconstructed and true text embeddings:

Lalign =
∥∥∥f̂t − ft

∥∥∥2
2

(5)

This enables text-absent clients to approximate their
missing text features directly from images.

4) Diffusion-Based Image Generation (Text to Image):
When image modality is missing, clients employ a
pretrained diffusion model Dstable to generate a synthetic
image conditioned on the available text input:

î = Dstable(xt), f̂i = Ei(̂i) (6)

The generated image is encoded to obtain f̂i, and a loss is
applied to align these generated features with real image
embeddings when they are available:

Ldiff =
∥∥∥f̂i − fi

∥∥∥2
2

(7)

During fine-tuning, only the cross-attention and text
projection layers are updated, while other components
such as the VAE and encoders remain frozen to preserve
pretrained knowledge.

5) Visual-Linguistic Memory Retrieval (VLMR): Each
client maintains a memory bank My of feature pairs
(ft, fi) for each class y, storing high-confidence embed-
dings during training:

My ←My ∪ {(ft, fi)}, if confidence > τ (8)

At inference, when a modality is missing, the classifier
predicts a label based on the available features:

ŷ = argmax(Classifier(ft)) (9)

To estimate the missing image feature, the average of
the top-K closest features from memory is used:

f̂i =
1

K

K∑
j=1

f
(j)
i (10)

The alignment loss ensures consistency between the
disentangled visual features and the retrieved estimate:

Lmem =
∥∥∥fi→v − f̂i

∥∥∥2
2

(11)

6) Fusion and Classification: All available and recov-
ered features are fused through a multilayer perceptron
(MLP) to form the final multimodal feature vector:

ffinal = MLP([ft, f̂t, fi, f̂i]) (12)

This fused vector is passed through a classification head,
and the classification loss is computed using cross-
entropy:

Lcls = CrossEntropy(H(ffinal), y) (13)

The total local loss for each client integrates all
components:

L(i)
total = Lcls+λ1Lorth+λ2Lalign+λ3Ldiff+λ4Lmem (14)
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C. Server-Side Coordination

After each communication round, the server aggre-
gates local model updates using a weighted averaging
strategy:

θglobal =

N∑
i=1

|Di|
|D|

θ(i) (15)

Optionally, latent feature projections can be shared for
aligning the latent spaces of different clients through
diffusion synchronization:

{Proj(ft),Proj(fi)} (16)

D. Inference Modalities and Recovery

The modality recovery strategy depends on which
modalities are available at inference time, as shown in
Table I.

Modality Configuration Used Features Recovered Modality
Text only ft, f̂i Diffusion or VLMR

Image only fi, f̂t Mapper Mit

Both present ft, fi None required

TABLE I: Client inference strategies by available modal-
ity

E. Privacy and Communication

Throughout training, no raw modality data leaves
any client. Communication involves encrypted gradients
or model weights, and latent features when necessary
for diffusion alignment. Optionally, differential privacy
mechanisms can be applied to the projections to enhance
security.
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