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Abstract—Continual learning enables vision-language models
to incrementally acquire new knowledge without relying on access
to the entire historical dataset. This capability is crucial for
adapting to evolving data distributions in real-world scenar-
ios, where models must handle domain shifts and incorporate
new information while retaining previously learned knowledge.
However, maintaining performance in large-scale models remains
challenging due to parameter shifts during learning and the sig-
nificant computational costs associated with full-model updates.
To address these challenges, this paper introduces a novel method
for Continual Test-Time Domain Adaptation (CTTDA) on vision-
language datasets, leveraging a MoE and adapter modules to
optimize domain-specific adaptation while maintaining zero-shot
classification capabilities. Utilising LoRA in MoE framework
within transformer layers, the model efficiently updates a small
set of parameters by dynamically selecting experts. This approach
minimizes computational costs by activating only a portion of the
model, avoiding the need for full-model updates during domain
adaptation. During test-time adaptation, entropy loss is calculated
without access to labels, improving the model’s fine-tuning
and guiding towards confident predictions across domains. A
contrastive warm-up phase further optimizes the adapter blocks
by enhancing the differentiation of domain-specific and domain-
invariant features, thereby establishing a strong foundation for
effective test-time adaptation. The proposed MoE-TTA model
achieves an average accuracy of 36.43% across diverse ImageNet
datasets and 32.93% in fine-grained classification, demonstrating
promising results, especially in datasets like EuroSAT (51.67%),
while being lower than several competitors, with no doubt in its
ability to capture domain shifts effectively.

Index Terms—Continual Test Time Adaptation, Mixture of
Expert, Domain Specific Feature, Domain-Independent Feature

I. INTRODUCTION

In real-world environments, machine learning models often

face domain shifts, where testing data significantly differs

from the training data, such as autonomous vehicles handling

unexpected weather conditions or medical systems dealing

with new patient demographics. Retraining models in these

scenarios is impractical, making Test-Time Domain Adapta-

tion (TTDA) [1] [2] critical for dynamic adaptation without

source data or target labels. CTTDA [3] [4] builds on TTDA

by allowing models to continuously adapt across multiple

evolving domains, while preserving prior knowledge. This

scenario presents the challenge of balancing adaptability and

generalization under evolving, unlabeled data.

Traditional TTDA methods, which focus on vision-based

approaches, often struggle without source data or labels,

relying on techniques like updating batch-normalization layers

[5] or pseudo-labeling [6], which can introduce errors and

hinder adaptation. These methods face challenges in separating

domain-specific from generalizable features. Vision-language

models like CLIP [7] leverage this synergy by utilizing both

modalities, enables robust zero-shot classification and domain

adaptation with prompts such as “An image of class,” making

it more effective in real-world applications.
In this work, the target is CTTDA using the CLIP model on

a vision-language dataset where the vision encoder adapts to

new, unseen domains while the text encoder remains frozen.

To the best of our knowledge, this is the first work to

leverage Mixture of Experts (MoE) [8] for CTTDA on a

vision-language dataset. Here, adapter blocks in the vision

encoder have been used with the MoE framework ensuring

significant computational benefits: the dynamic selection of

specialized experts allows the model to handle domain-specific

features efficiently without activating the entire network. This

reduces the computational overhead typically associated with

full-model adaptation while still capturing domain-specific nu-

ances. In the MoE framework, adapter modules such as LoRA

[9] act as experts, accelerating the adaptation process during

training. In addition, the separation of domain-invariant and

domain-specific features is crucial and this approach ensures

that domain-specific features are adapted for each new target

domain, while domain-invariant features remain untouched,

preserving the model’s ability to generalize. A feature-gating

mechanism that merges these feature types, ensures that both

adaptability and generalization are retained. Moreover, we

have employed an entropy loss to guide confident predictions

in new domains during the inference time and before deploy-

ment we have integrated a contrastive warm-up phase to help

the model distinguish between domain-invariant and domain-

specific modules effectively.
In summary, the key contributions of this work are:

• Unique application of MoE for CTTDA on a vision-

language dataset.

• Enhancement of computational efficiency by using MoE

to manage parameters in CTTDA with minimal overhead,
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making it ideal for adaptive and scalable real-world

applications.

II. RELATED WORKS

Continual Learning (CL) [10] addresses challenges from

incremental data and domain shifts but struggles with scal-

ability and zero-shot transfer to unseen domains. These chal-

lenges become more complex in CTTDA, where models must

continually adapt to evolving target domains without access

to labeled source data. Building on the foundations of CL,

CTTDA requires balancing adaptability to new domains with

the retention of generalizable knowledge.

Early works like TENT [5] introduced batch normalization

updates for affine transformations. CoTTA [6] employed a

teacher-student framework to generate and refine pseudo labels

using consistency loss. EcoTTA [3] utilized meta-networks

and self-distillation for memory-efficient adaptation. DePT

[11] incorporated visual prompts to adapt target domains and

enhance source representation. However, these methods often

struggle with convergence issues due to their reliance on

shared architectures. BECoTTA [12] introduces a modularized

Mixture of Domain Low-Rank Experts (MoDE) architecture,

where each expert captures domain-specific knowledge and

enhances mutual synergy to maximize the dependency be-

tween domains and experts. However, it is designed solely as

a vision-based model. Vision-language dataset on the other

hand for CTTDA can enhance adaptability by leveraging

both visual and textual modalities, allowing the model to use

semantic cues from text prompts for more robust zero-shot

classification, improving its ability to generalize across unseen

domains.

The MoE framework enables efficient domain adaptation

by activating only a subset of specialized experts, reduc-

ing computational costs while maintaining performance [13].

It has been employed in models like Adamix for efficient

fine-tuning [14] and Meta DMoE for knowledge distillation

across unlabeled domains [15]. However, these models did

not address the need for continual adaptation in evolving

target domains, as required in CTTDA. The potential of MoE

in CTTDA, particularly on vision-language datasets, remains

underexplored, despite its success in handling large-scale

models across diverse domains. Recently, continual learning

frameworks with MoE, such as dynamic expansion in CLIP

models through MoE adapters, have shown promising results

by preserving zero-shot recognition and reducing parameter

tuning burdens by 60%, highlighting their potential in vision-

language CTTDA scenarios [16].

In the context of CTTDA, various approaches utilize the

zero-shot capabilities of CLIP [17]. Vision language models,

with their multimodal nature and ability to generalize without

prior training, offer promising avenues for test-time adaptation.

Test-time prompt tuning (TPT) [18] dynamically optimizes

prompts using a single test sample by minimizing entropy

across augmented views, enhancing CLIP’s zero-shot accuracy

by 3.6% on average and improving generalization to unseen

domains without requiring additional training data. CoOp
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Fig. 1. Architecture for continual test-time adaptation: Test images are
processed through a Clip model with an adapter block, using cosine similarity
and entropy loss to adapt to domain shifts.

[19] adapts CLIP-like models by turning context words into

learnable vectors, achieving significant improvements over

manual prompts with minimal labeled data, but struggles

with generalization to unseen classes, which CoCoOp [20]

addresses by introducing dynamic, instance-specific prompts

to enhance adaptability. ProDA [21] improves domain adap-

tation by leveraging class prototypes and feature distances

to correct noisy pseudo labels and compact target feature

space during training, while PromptAlign [22] focuses on

minimizing feature distribution shift between source and out-

of-distribution (OOD) test samples through prompt tuning,

improving zero-shot accuracy. Additionally, VTE Ensemble

[23] employs a vision-text-space ensemble strategy, enhancing

robustness under distribution shifts by combining predictions

from multiple models, surpassing text-space-only ensembles

in handling real-world scenarios.

III. METHODOLOGY

This section describes the detailed methodology used in this

study for continual test time domain adaptation using mixture

of domain experts in the vision language model, Clip.

A. Problem Statement

In this work, we tackle the challenge of test-time domain

adaptation using the CLIP model, where the vision encoder

needs to adapt to new, unseen domains during inference. The

task is to extract and adapt features that vary across domains

while maintaining those that are invariant and applicable to

general classification. In Figure 1, the source model, consisting

of a pre-trained CLIP model, is initially given, but during

test time, the model is exposed to images from various target

domains that differ significantly from the source domain. The

text encoder is kept frozen and provides text prompts, such

as “An image of {class},” for zero-shot classification. We

denote the source domain as DS = {(xS , yS)}, where xS are

images and yS are labels. The target domain is represented

as DT = {xT }, where xT are images encountered during
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Fig. 2. Test-time adaptation architecture with a mixture of experts (MoE):
after disentangling Domain-specific features and domain-invariant features,
the Domain-specific features are passed to MoE mechanism to apply selective
freezing for efficient adaptation across domains in inference time.

test time without labels. The vision encoder is denoted as

Ev(·), which extracts visual features, and the text encoder as

Et(·). Our objective is to adapt Ev in the target domain by

disentangling domain-invariant features, finvariant, and domain-

specific features, fspecific, in order to facilitate robust classifi-

cation during test time.

B. Vision Encoder Fine-Tuning

For domain adaptation in Figure 2, only the vision encoder

Ev is fine-tuned while the text encoder Et remains frozen.

During the test phase, images from the new domains are

passed through the vision encoder. To handle domain shifts

effectively, the vision encoder is equipped with Adapter blocks

that enable the model to learn and represent both domain-

specific features and domain-invariant ones. This fine-tuning

process ensures that the model not only adapts to specific

characteristics of the target domain but also retains the gen-

eralizable features necessary for accurate classification using

the textual descriptions from the text encoder.

C. Adapter Block

The Adapter block is a critical component of our model,

designed to handle the unique challenges of test-time do-

main adaptation. It consists of multiple sub-modules that

perform various operations to disentangle and process domain-

specific and domain-invariant features. The Adapter block first

performs feature disentanglement, separating input features

into domain-specific and domain-invariant components. The

domain-invariant module extracts features common across

domains, ensuring the model retains generalizable informa-

tion. In contrast, the domain-specific encoder focuses on the

characteristics unique to the domain currently being processed,

resulting in fspecific features that capture the new domain’s

nuances.

After disentanglement, the domain-specific features fspecific

are passed through a MoE block. A router mechanism [8]

is employed to select the appropriate experts based on the

domain-specific features, allowing the model to handle di-

verse characteristics across domains. Each expert in the MoE

is trained using low-rank adaptation (LoRA) techniques to

capture unique aspects of the target domains effectively. This

dynamic selection and adaptation process produce an updated

set of domain-specific features, f ′specific, which are then ready

to be merged with the domain-invariant features.

To combine the domain-specific and domain-invariant fea-

tures, we introduce a feature-gating mechanism. This mech-

anism learns a gate vector through a small neural network,

determining the appropriate contribution of each feature type

to the final representation. The final representation, xfinal,

is computed as a weighted sum of the domain-specific and

domain-invariant features, ensuring both adaptability to new

domains and retention of generalizable information.

D. Adaptation Through Entropy Loss

During test-time adaptation, we employ an entropy loss

function to guide the vision encoder. This approach is aimed

at refining the model’s confidence in its predictions on target

domain images. The entropy loss is defined as

Lentropy = −
∑

p(y|xT ) log p(y|xT ),

where p(y|xT ) is the probability distribution over the possible

classes for the target image xT . By minimizing this entropy,

the model is encouraged to produce more confident predic-

tions, reducing uncertainty and aligning its predictions with

the domain-specific characteristics it encounters. This process

effectively facilitates domain adaptation, helping the model to

focus on the relevant features specific to the target domain

while avoiding overfitting to the noise inherent in domain

shifts.

E. Warm-Up of the Adapter Block Using Contrastive Loss

Before test-time adaptation, the Adapter block undergoes a

warm-up process using contrastive loss, which helps fine-tune

the modules for disentangling domain-specific and domain-

invariant features. During this warm-up phase, images from

the target domain are augmented to simulate the presence of

multiple domains. The domain-invariant module is trained us-

ing a contrastive loss that brings the domain-invariant features

of these different augmentations closer in the feature space.

This encourages the module to learn a representation that

remains consistent across various domains. Mathematically,

this is expressed as

Linvariant = − log
exp(sim(f

(1)
invariant, f

(2)
invariant))∑N

i=1 exp(sim(f
(1)
invariant, f

(i)
invariant))

.

Simultaneously, the domain-specific module is trained to dif-

ferentiate between augmentations, ensuring that features from
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different augmentations remain distinct. The contrastive loss

for this module is defined as

Lspecific = log

∑
i �=j exp(−sim(f

(i)
specific, f

(j)
specific))

∑N
i=1

∑N
j=1 exp(−sim(f

(i)
specific, f

(j)
specific))

.

This dual contrastive training ensures that the domain-invariant

module focuses on generalizable features while the domain-

specific module becomes sensitive to variations introduced

by domain shifts. This warm-up phase prepares the model

for test-time adaptation by establishing a solid baseline for

distinguishing between invariant and specific features.

IV. RESULTS AND DISCUSSION

A. Datasets

We evaluate the proposed method in a continual test-

time adaptation setting following [24] using various domain-

shifted versions of ImageNet (set 1) and other fine-grained

datasets (set 2). Specifically, the performance is assessed on

ImageNet-C, which contains 15 types of corruptions applied

to ImageNet validation images, as well as natural domain

shifts from datasets such as ImageNet-R, ImageNet-Sketch,

and ImageNet-D109. To evaluate adversarial robustness,

ImageNet-A is included, and results on the independent test

set ImageNet-V2 are also reported. To evaluate performance

beyond the ImageNet domain, the proposed method is tested

on several fine-grained classification datasets. The Aircraft

dataset includes various airplane models, while Caltech101

covers general object categories. For transportation-related

classes, Stanford Cars is used. DTD focuses on textures,

and EuroSAT on satellite imagery. Flowers102 and Food101

represent flowers and food items, respectively, while Oxford-

Pets features pet breeds, UCF101 targets human actions, and

SUN397 captures diverse scenes. These ten datasets(set 2)

enable a comprehensive assessment of the model’s robustness

across different domain shifts.

B. Performance comparision

The CTTDA performance, as shown in I, evaluates various

methods, including the proposed MoE-TTA model, across

several datasets with significant domain shifts, such as Im-

ageNet, ImageNet-C, ImageNet-A, ImageNet-V2, ImageNet-

R, ImageNet-S, and ImageNet-D109. MoE-TTA achieves an

average accuracy of 36.43%, which, while lower than several

competitors, demonstrates competitive performance on specific

datasets. Notably, MoE-TTA performs best on ImageNet-V2

with 30.9% accuracy and lowest on ImageNet at 26.1%, high-

lighting its strengths and weaknesses in adapting to varying

domain conditions. For datasets of ImageNet variations, MoE-

TTA leverages selective freezing and low-rank adaptation to

efficiently fine-tune domain-specific parameters, outperform-

ing traditional methods in scalability

The comparative analysis shows that Zero-shot CLIP leads

with an average accuracy of 43.64%, followed by TPT and

CoOp, while MoE-TTA lags behind but exhibits potential

for improvement through continual adaptation. MoE-TTA
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Fig. 3. The Accuracy in set 1 and set 2 of the dataset sequence fluctuates
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achieves an average accuracy of 32.93% in fine-grained clas-

sification tasks, as summarized in II, with notable results on

datasets like EuroSAT (51.67%) but lower performance on

more challenging datasets like Cars (29.50%) and UCF101

(30.07%). Despite Zero-shot CLIP’s average accuracy of

36.42%, MoE-TTA demonstrates resilience in adapting to do-

main shifts and shows promise for handling unseen categories

beyond the ImageNet domain.

Lastly, MoE-TTA achieves significant computational effi-

ciency by activating only 61.54 million parameters during

adaptation, compared to the 149.62 million parameters re-

quired by the current best-performing VTE Ensemble [23].

C. Analysis of Mixure of Different Domain Experts in CTTA

The figure 3 provides insights into how the number of

domain-specific experts affects accuracy in a multi-domain

task using the MoE-TTA (Mixture of Experts - Test-Time

Adaptation) method, where each expert specializes in a par-

ticular domain feature. For Accuracy Set 1 (ImageNet Varia-

tions, blue), performance increases steadily up to 16 experts,

achieving a peak accuracy of 73.9%, indicating that using 16

experts offers the best performance for this dataset. In contrast,

Accuracy Set 2 (Different Object Sets, orange) sees its high-

est accuracy at 8 experts (72.1%), after which performance

declines, suggesting that fewer experts may be more suitable

for this dataset. Considering the fluctuations in both datasets, 8

experts would be preferable for balancing performance across

different domain-specific tasks. However, for tasks focused

solely on domains similar to Accuracy Set 1, 16 experts may

be optimal. The results also underline the risk of overfitting

when increasing experts for smaller datasets, as performance

deteriorates beyond 8 experts, whereas larger datasets like

ImageNet benefit from a higher number of experts.

Understanding the contribution of individual experts in the

MoE-TTA model is crucial for optimizing its performance.

Figure 4 illustrates the percentage contribution of four experts

across various transformer encoder layers. The results reveal
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TABLE I
EVALUATION OF MOE-TTA IN A TTDA SCENARIO. DIFFERENT VARIATIONS OF ADAPTATION IN THE CLIP MODEL FROM EXISTING RESEARCH ARE

ASSESSED ON DATASETS OF IMAGENET VARIATIONS (SET 1) EXPERIENCING DOMAIN SHIFTS AND SHOWN THE AVERAGE ERROR RATES(%)

Methods ImageNet ImageNet-C ImageNet-A ImageNet-V2 ImageNet-R ImageNet-S ImageNet-D109 Average
Zero-shot CLIP [17] 33.1 75.2 49.3 39.5 26.4 53.7 27.3 43.64
TPT [18] 29.9 74.8 45.8 35.9 23.7 52.4 26.9 41.34
CoOp [19] 29.2 73.1 48.6 35.7 23.4 48.2 26.1 40.63
CoCoOp [20] 29.5 73.8 43.9 35.6 18.1 49.9 25.7 39.36
ProDA [21] 30.7 72.4 41.2 36.4 22.1 50.3 25.8 39.84
PromtAlign [22] 28.3 74.6 41.1 35.1 21.8 43.2 26.5 38.65
VTE Ensemble [23] 28.2 72.9 36.4 34.6 20.1 49.7 24.5 38.06
MoE-TTA 26.1 73.4 36.1 30.9 18.4 44.1 24.0 36.43

TABLE II
TO ASSESS CATEGORIES BEYOND THE IMAGENET DOMAIN, VARIOUS EXISTING RESEARCHES OF THE ADAPTIVE CLIP MODEL ARE EVALUATED ACROSS

TEN DATASETS, EACH INVOLVING CLASSIFICATIONS (SET 2) UNDERGOING DOMAIN SHIFTS AND SHOWN THE AVERAGE ERROR RATES(%)

Methods Aircraft Caltech Cars DTD EuroSAT Flowers Food101 Pets SUN397 UCF101 Average
Zero-shot CLIP [17] 76.33 6.65 34.52 55.73 57.99 32.56 16.35 11.75 37.41 34.87 36.42
TPT [18] 75.22 5.84 33.13 52.25 55.00 29.65 15.70 10.98 35.69 32.44 35.14
CoOp [19] 74.99 5.98 32.52 54.31 54.76 29.23 15.22 11.01 32.78 29.32 34.10
CoCoOp [20] 73.56 5.66 30.75 53.01 51.67 26.79 14.52 10.33 29.22 27.34 32.23
ProDA [21] 72.40 5.99 31.47 53.45 53.33 25.46 14.36 10.92 28.56 26.87 31.92
PromtAlign [22] 69.12 5.52 30.13 49.98 52.98 25.01 14.22 10.77 27.41 25.30 30.16
VTE Ensemble [23] 68.87 5.85 29.72 48.54 52.54 24.12 14.67 10.45 26.33 24.87 29.94
MoE-TTA 66.22 5.81 29.50 50.25 51.67 27.80 15.67 10.96 29.82 30.07 32.93

that different experts contribute varying degrees across layers,

with Expert 1 demonstrating a consistent contribution of

around 24-30%, particularly in earlier layers, while Expert 4

shows a more pronounced influence in later layers (35% at

Layer 10). This variability indicates that different experts may

be specialized for certain tasks or features, thus enhancing

the overall model performance through a collective learning

mechanism.

To further analyze the effectiveness of the MoE-TTA model,

we examined the feature representations through t-SNE vi-

sualizations. Figure 5 presents these representations across

domains (Fog, Gaussian, Shot, Elastic) and selected ImageNet-

C classes (Cat, Giraffe, Airplane). The results highlight that

domain-invariant features exhibit a blended representation

across different domains, with clear class separation, while

domain-specific features show more distinct separations along

domain boundaries. This distinction confirms the effectiveness

of the MoE-TTA model in separating domain-invariant from

domain-specific features, thereby enhancing the robustness of

the model against varying domain conditions.

Overall, the results indicate that the MoE-TTA model

demonstrates a viable approach for continual test-time adapta-

tion in the face of domain shifts. While its performance metrics

are competitive, they also underscore the need for further

refinement to enhance accuracy, particularly in challenging

datasets.

V. CONCLUSION

This paper presents MoE-TTA, to the best of our knowl-

edge, a novel framework for CTTDA that integrates the

MoE architecture with LoRA for efficient domain adaptation

on vision-language datasets. The model achieves competitive
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Fig. 4. Activate the expert ratio in MoE-TTA for four experts across various
transformer encoder layers in the Vision Encoder of the CLIP model.

performance, particularly in specific datasets such as EuroSAT

(51.67%), demonstrating its potential to handle diverse domain

shifts with reduced computational complexity. However, its

performance, while promising, is lower than several com-

petitors in certain datasets, indicating areas for improvement.

The results highlight MoE-TTA’s ability to efficiently separate

domain-specific and domain-invariant features, which is cru-

cial for adapting to unseen domains. Despite these strengths,

limitations remain, particularly in adapting to more challeng-

ing datasets such as Cars and UCF101. The reliance on labeled

data for the Adapter block’s warm-up process using contrastive

loss means MoE-TTA is not entirely unsupervised, limiting

its adaptability in fully unsupervised scenarios. Future work

will focus on refining the MoE-TTA framework to enhance its

accuracy, exploring advanced strategies for more robust feature

disentanglement and optimizing expert selection in dynamic
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Fig. 5. Feature representations (t-SNE) of four domains (Fog, Gaussian, Shot, Elastic) and three ImageNet-C classes (Cat, Giraffe, Airplane). Domain-invariant
features show intermingled domains, while domain-specific features exhibit clear separation between domains along with distinct class separation.

environments. Moreover, extending the model’s application to

a broader range of datasets and investigating its scalability

across larger architectures will further solidify its applicability

in real-world, evolving domain settings.
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