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Abstract—Medical image segmentation plays a vital role in
diagnostic and treatment planning, where precision is crucial
for accurate outcomes. Traditional segmentation methods, while
effective in many areas, often fail to incorporate user-driven
guidance, leading to errors in region identification, especially
when irrelevant regions are segmented. In this study, we present
a new, instruction-based medical image segmentation framework
that enhances user interaction while delivering precise and
context-aware results. Our approach addresses the limitations of
previous works, such as vision-large language models (LLM) like
LLaVA, which provide context but do not perform segmentation,
and the Segment Anything Model, which performs segmenta-
tion but does not incorporate user’s text-guided instruction.
We propose a segmentation model framework that combines
vision-language embeddings from LLava with SAM to perform
accurate, query-based segmentation of medical images. A key
innovation of our model framework is its ability to handle
false premises—situations where a user queries for an organ
not present in the image—by employing a similarity-based
mechanism that prevents incorrect segmentation. Tested on MRI
datasets, FLARE22, our system achieves the highest segmentation
dice coefficient 63.9%, with significantly improved relevance
and reliability. The results demonstrate the effectiveness of our
approach in refining segmentation quality and enhancing user-
guided interaction, thus offering an advanced tool for medical
imaging applications.

Index Terms—Vision Language Model, LLava, MED, User-
Guided Interaction

I. INTRODUCTION

In the medical domain, image segmentation is critical for

identifying specific regions in diagnostic scans, such as or-

gans or tumors. The field of computer vision has advanced

significantly, particularly in image segmentation, where the

goal is to accurately separate objects from their background.

For example, a segmentation model tasked with identifying

a tumor in an MRI scan would isolate the tumor from

surrounding tissues. This technique is crucial for precise image

interpretation in applications like medical diagnostics and

autonomous systems. In many real-world applications, the

ability to guide and refine the segmentation process is crucial.

However, traditional segmentation models have limitations,

especially regarding user interaction. They often lack the

flexibility to incorporate user text guidance as input, leading

to less accurate or irrelevant results.

To address these shortcomings, integrating large language

models into the segmentation process opens up new possi-

bilities for user-driven segmentation. By allowing users to

provide specific instructions on what they want segmented

[1], models can deliver more tailored and accurate outcomes.

Language-assisted models like LLaVA (Language-Assisted

Vision Architecture) [2] are designed to generate context based

on both the image and the user’s query. However, LLaVA on

its own does not perform the segmentation—it only provides

the context.

This is where the Segment Anything Model (SAM) [3]

comes into play. SAM excels at extracting features from

different regions of an image, allowing for precise segmen-

tation of specific objects or areas based on user prompts.

Its flexibility makes it particularly useful for applications

that require interactive and adaptable segmentation, such as

medical imaging or complex multi-object scenes.

Making sure that the segments match the user’s query

closely is important for ensuring that the model’s output

aligns with what the user wants. However, challenges remain,

particularly in avoiding false positives. When asked to segment

an object that isn’t present in the image, models sometimes im-

properly segment irrelevant regions. Ensuring that the system

can recognize when an object is absent is crucial for improving

the accuracy and reliability of segmentation tasks.

In this work, we propose an instruction-based segmen-

tation framework that addresses these challenges. Our ap-

proach combines the strengths of LLaVA-MED [4] and MED-

SAM [5] to create an interactive medical image segmentation

system capable of responding to user queries with reliable

performance. LLaVA-MED is equipped with comprehensive

knowledge of various medical terms and resources, providing

it with a foundational understanding of medical contexts.

Similarly, MED-SAM has been trained to segment medical

images from diverse modalities, including MRI and CT scans,

across various body regions such as neuroimaging, chest X-

rays, and abdominal MRIs. The system leverages joint vision-

language embeddings, a context cache of medical features,

and advanced feature extraction mechanisms to ensure pre-

cise organ segmentation from MRI images. The framework

extracts features from the MRI using a Vision Language
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Projection Embedding, which splits into two streams: one

directed towards a prompt encoder that extracts segmentation

information features of a particular organ based on user

instruction, and the features are sent to the MED-SAM decoder

for prediction mask generation, and another towards a Context

Cache which is the extracted language features of external

knowledge resource of each organ for feature comparison

and query validation. This dual-path approach allows the

system to intelligently determine query relevance and refine

segmentation outcomes. A key focus of our methodology

is dealing with false premises, where the user might query

for an organ not present in the image. To tackle this, we

implement a context-matching between the features extracted

by MED-SAM and a cache of pre-computed organ features.

This allows the system to intelligently determine whether

the query is relevant or not. If the system detects that the

requested organ is absent, it avoids producing an incorrect

segmentation, ensuring higher reliability. This method not only

refines segmentation outcomes but also significantly reduces

the risk of false positives in real-world applications. The main

contributions of our segmentation framework are as follows:

• Provides a user-guided tool for precise medical organ

segmentation.

• Intelligently assesses the relevance of user queries, avoid-

ing incorrect segmentations when the requested organ in

the query is absent, thereby enhancing reliability.

• Generates queries from various external resources and in-

troduces an image-query pair dataset for effective model

fine-tuning.

II. RELATED WORK

Medical image segmentation aids in identifying organs in

scans. Weiwei Tian et al. [6] proposed MOSMOS, excelling

on BTCV and AMOS but needing large datasets. Zhang et

al. [7] addressed catastrophic forgetting in segmentation but

faced pseudo-label and computational issues. Jun Ma et al.

[5] developed MedSAM, outperforming traditional models but

struggling with boundary accuracy.

These studies are relevant to our research on organ-relevant

segmentation. In addition, several papers that utilize vision

models or vision-language model techniques for overall seg-

mentation are presented in Table I.

III. METHODOLOGY

A. Problem Statement

This work addresses the challenge of instruction-based
medical image segmentation, where a user query guides the

system to identify and segment a specific organ from an

abdominal MRI image. The method combines both visual data

from the MRI and semantic data from the user’s query, aiming

to segment the correct organ even when multiple organs are

present in the image. The system is designed to respond to

queries like “Which organ is responsible for bile production?”
and generate a segmentation mask for the corresponding

organ. The problem is framed using various notations: Let

I represent the abdominal MRI image and Q represent the

Which organ produces
digestive enzymes that

break down
carbohydrates?

MED-SAM
Encoder

Segment Information
Extractor

Information of
Interest Extractor

MED-SAM
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Fig. 1: Illustrates the user-guided segmentation framework.

In this framework, a query and abdominal image are input

into LLaVA-MED, which generates a vision-language context

embedding. The Segment Information Extractor then retrieves

segmentation features, which are sent to the pre-trained Prompt

Encoder of MED-SAM to generate the prediction mask for

the specified organ. The Information of Interest Extractor

measures the similarity between features and external text

resources, serving as a context cache. L1 Loss optimizes

LoRA fine-tuning in both LLaVA-MED and the Information

of Interest Extractor, while L2 Loss fine-tunes the Segment

Information Extractor and the LoRA in LLaVA-MED.

user’s query. The joint vision-language embedding Fvl is

generated by LLaVA-MED, encoding both image and query

features. The segmentation-related visual feature is denoted as

Fseg, and the extracted textual feature representing semantic

details is denoted as Ft. The system also leverages C ′, a

feature representing irrelevant organs. The system generates

a prediction mask Morgan through the SAM Decoder based on

query relevance. The binary indicator Iout determines whether

the final mask should be valid or blank based on query

relevance.

B. LORA Fine-Tuning in LLAVA-MED

In this system, the LLaVA-MED Vision-Language Encoder
plays a key role in extracting features containing the context

of a segmented organ from both the image and the query.

The model undergoes fine-tuning where only the lora adapter
is updated, while the vision and text encoder remains frozen

to preserve its pre-trained language understanding. The fine-

tuning goal is to adapt the model to medical images, specifi-

cally improving its segmentation capabilities.
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TABLE I: shows the Relevant of Vision-Language Models for Segmentation

Papers Datasets Ideas Limitations

Lai et al. (2023) [8]
OpenImages, ScanNetv2,
ReasonSeg

Introduces reasoning-based segmenta-
tion where the model produces segmen-
tation masks from complex text queries.

High computational costs for training the
model on large-scale data; challenges in
handling extremely long instructions.

Xin Lai et al. (2021) [9]
Cityscapes, Pascal VOC,
ADE20K

Proposes Directional Context-Aware
Consistency and Directional Contrastive
Loss (DC Loss) to improve semi-
supervised segmentation by maintaining
consistency between features of varying
context.

Relies on limited labeled data; computa-
tional complexity increases when scaling
up to large datasets or higher resolutions.

Zhuotao Tian et al. (2023) [10]
ADE20K Proposes a context-aware classifier for

semantic segmentation that dynamically
adjusts decision boundaries based on
contextual features in the input. It en-
hances model performance with minimal
extra computational overhead.

Slightly increases inference time and pa-
rameters. The method may struggle with
noisy or highly varied environments.

Badrinarayanan et al. (2017) [11]
CamVid (road scenes),
SUN RGB-D (indoor
scenes)

Proposed SegNet, an encoder-decoder
architecture for image segmentation us-
ing pooling indices for upsampling, re-
ducing memory requirements at infer-
ence.

Struggles with fine-grained boundary
details in some complex segmentation
tasks; limited performance on larger
datasets due to memory constraints.

Xueyan Zou et al. (2023) [12]
9 datasets covering
interactive segmentation,
referring segmentation,
video object
segmentation, etc.

SEEM introduces a versatile model for
multi-task segmentation using visual
and textual prompts in a joint visual-
semantic space. It supports dynamic
composition and interactive segmenta-
tion through memory prompts.

The model requires multiple rounds of
interactions for refinement and may have
limitations in handling complex or over-
lapping prompts. Some prompt types
may not align perfectly in certain cases.

Deyao Zhu et al. (2023) [13]
Conceptual Caption,
SBU, LAION (Approx.
5M image-text pairs)

Uses a two-stage training approach with
a ViT backbone, Q-Former for visual
features, and a linear projection layer to
connect vision and LLMs.

Limited in complex reasoning tasks and
real-world scenario generalization.

Chenfei Wu et al. (2023) [14]
N/A (Collaborates with
existing models)

Integrates ChatGPT with various visual
models like BLIP and Stable Diffusion
to handle multimodal tasks.

Struggles with fine-grained image edit-
ing and often requires detailed prompts
to work effectively.

Wenhai Wang et al. (2023) [15]
Vision-language datasets
like COCO, Visual
Genome

Adopts an open-ended decoding mech-
anism to extend LLMs’ capabilities to
vision-related tasks.

Requires substantial computational re-
sources and might face challenges in
handling diverse visual tasks.

Henghui Ding et al. (2021) [16]
RefCOCO, RefCOCO+,
RefCOCOg

Combines transformers with query gen-
eration to enhance performance in refer-
ring segmentation.

Lacks efficiency in processing large
amounts of natural language descriptions
in real-time environments.

Zhaoyang Liu et al. (2023) [17]
LaViT Combines chatbots with vision models to

enhance interaction in visual tasks.
Limited in handling nuanced vision-
language interaction, especially when
tasks require intricate image details or
contextual understanding.

Haotian Liu et al. (2023) [18]
Instruction-based
datasets and image-
caption pairs

Employs visual instruction tuning and
multimodal pretraining to boost model
understanding.

Might not generalize well to tasks out-
side the scope of pre-trained instruc-
tions; requires additional fine-tuning on
domain-specific datasets for specialized
tasks.

C. Main Workflow

The core workflow of the system can be described in three

stages: processing the user query and image through LLaVA-
MED, utilizing the Context Cache from Text Encoder, and

performing segmentation via the SAM Decoder processed the
segmentation prompt .

1) LLaVA-MED Processing of Question and Image: The

first stage involves feeding the input pair consisting of the

MRI image I and the prompt generated from user’s question

Q into LLaVA-MED, which produces a joint vision-language
projection embedding Fvl. This embedding encodes both the

visual content of the image and the semantic meaning of the

query. Two main components use this feature: the Segment
Information Extractor, which extracts a visual feature of Fseg

relevant to the organ asked to be segmented in the query

which is the segmentation prompt actually, and the Information
of Interest Extractor, which produces a textual feature Ft

representing the queried organ’s information and context.

2) Context Cache: The Context Cache is a pre-computed

feature bank containing text feature representations of various

organs. Each organ, Ci, is represented as FCi , which is

generated by passing publicly available medical descriptions

through Text Enocoder. Additionally, an irrelevant feature rep-

resentation C ′, denoted as FC′ , is generated using irrelevant or
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TABLE II: shows the dice coefficient of segmentation for different SAM-based pre-trained models in our dataset in multi-organ

segmentation task. It follows only segmentation where user instruction is not given and only segmentation is performed by the

models

Methods Aorta Duodenum Esophagus Gallbladder IVC Kidney L Kidney R LAG Liver Pancreas RAG Spleen Stomach Dice Coefficient
SAM [3] 80.5 42.7 34.4 50.2 46.5 84.8 89.9 35.4 89.1 51.5 20.6 83.3 69.8 60.5
SAM-Med2D [19] 58.6 46.9 30.3 31.3 19.3 88.9 85.9 28.9 93.8 60.2 12.2 82.0 70.3 51.7
MA-SAM [20] 88.2 92.6 68.4 79.0 78.0 79.4 82.5 48.4 95.1 76.9 46.8 85.2 77.3 73.1
MedSAM [5] 80.9 52.2 66.8 58.7 74.2 87.4 91.8 50.2 91.1 71.2 38.1 87.0 81.5 74.5

TABLE III: shows the dice coefficient of segmentation for different SAM-based models after training with our dataset where

the user instruction is given and only a particular organ will be segmented based on the instruction or query.

Segmentation Model Aorta Duodenum Esophagus Gallbladder IVC Kidney L Kidney R LAG Liver Pancreas RAG Spleen Stomach Dice Coefficient
nn-Unet [21] 44.3 25.6 17.2 25.1 23.2 46.2 49.5 18.6 44.6 25.8 10.3 41.7 35.7 31.2
SAM [3] 50.7 28.1 22.4 31.1 29.7 54.3 58.9 22.5 57.2 33.9 13.2 50.5 43.1 39.9
Swin-Unetr [22] 52.3 27.8 22.4 33.1 30.2 55.2 58.4 23.0 58.5 34.5 13.5 53.1 44.8 40.2
SAM-Med2D [19] 46.9 36.6 23.1 24.5 14.9 68.1 66.3 22.0 74.2 46.2 9.5 61.5 53.2 45.7
MA-SAM [20] 66.2 70.2 52.1 60.2 59.4 61.6 66.0 36.8 71.3 57.9 35.1 63.9 59.0 58.5
MedSAM [5] 71.4 44.4 58.2 49.9 64.3 74.3 78.0 42.7 78.5 62.2 32.4 73.9 69.3 63.9

unrelated organ data. To match the query with a corresponding

organ, the cosine similarity sim(Ft, FCi) is computed between

the text feature Ft from the Information of Interest Extractor

and each organ feature FCi in the cache:

sim(Ft, FCi) =
Ft · FCi

‖Ft‖‖FCi‖
If the highest similarity score corresponds to FC′ , the

system identifies the query as irrelevant.

3) Segmentation via MED-SAM Mechanism: The SAM
Decoder performs the actual segmentation of the organ. The

visual feature Fseg from the Segment Information Extractor is

passed to the prompt encoder and extracts the segmentation

context feature for SAM Decoder, which produces a segmen-

tation mask Morgan.

D. Training and Inference

During training, the model optimizes the Segment Informa-
tion Extractor, the Info of Interest Extractor, and the LORA

adapter layers in LLAVA-MED. The SAM Encoder, Decoder

and the rest of the model operate in a zero-shot manner,

leveraging pre-trained weights. Two losses are computed dur-

ing training: The first loss, L1 Loss, is designed to optimize

the classification task, where LLaVA-Med predicts an organ

class label and compares it to the ground truth label from the

question-answer pair. This is done using cross-entropy loss,

which measures the divergence between the predicted and true

labels. The cross-entropy loss is expressed as:

L1 Loss = −
C∑

i=1

yi log(ŷi)

where yi is the true label, ŷi is the predicted probability

for class i, and C is the number of classes, including the

abdominal organs and ”none of them.” This L1 Loss will

optimize the parameters of both Information of Interest Ex-

tractor layers which are nothing but simple neural networks

and LORA layers inside LLAVA-MED.

The second loss, L2 Loss, is used to optimize the segmen-

tation task. Once LLaVA-Med predicts the organ class, the

decoder of Med-SAM uses this prediction to segment the cor-

responding organ in the abdominal image after passing through

the Segment Information Extractor to reveal the segmentation

context. This segmentation later on plays as a prompt in the

Prompt encoder which extracts segmentation information for

the decoder of MED-SAM and predicts the mask. The Dice
Loss used to supervise the segmentation mask:

L2 Loss = 1− 2 |Morgan ∩Mgt|
|Morgan|+ |Mgt|

which is used to compare the predicted segmentation mask

Morgan and the ground truth mask Mgt.

IV. RESULT AND DISCUSSION

In this study, we utilized the FLARE22 dataset to assess the

performance of our model on external test cases. FLARE22,

introduced at MICCAI 2022 as part of a semi-supervised

challenge, includes MRI scans of patients with conditions af-

fecting organs such as the liver, kidneys, spleen, and pancreas,

providing annotations for 13 organs. For our experiments, we

used a subset consisting of 50 MRI (volume) cases. From these

cases, we manually selected 500 images for each organ along

with their ground truth masks to conduct external evaluations.

The dataset was split into an 80% training set and a 20% test

set for model training and evaluation. We evaluated the dataset

using a SAM-based model with its pre-trained weights. The

results are presented in Table II where Med-SAM achieved the

highest dice coefficient of the dataset. The methods mentioned

in Table 2 are exclusively segmentation models; they are not

user-guided segmentation approaches.

The processing of the dataset begins by gathering a dataset

of abdominal images along with publicly available health blogs

that contain detailed information about 13 abdominal organs,

such as the liver, spleen, and pancreas. Using GPT-4, questions

are generated from these health blog documents, each designed

to ask about a specific organ. For example, a question could

be ”Which organ is responsible for filtering blood in the

abdomen?” with the answer being ”Liver.” These generated

question-answer pairs are then manually reviewed to ensure

that only relevant and appropriate questions are retained.
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SEGMENTATION TASK RESPONSE PROMPT

USER: <image_file>
Please answer the following multiple-choice question

based on the image analysis and generate a

segmentation mask for the correct organ.

Question: Which organ is responsible for breaking
down food using gastric acid?

Options: A. Liver, B. Right kidney, C. Spleen, D.

Pancreas, E. Aorta, F. Inferior Vena Cava (IVC), G.

Right Adrenal Gland (RAG), H. Left Adrenal Gland

(LAG), I. Gallbladder, J. Esophagus, K. Stomach, L.

Duodenum, M. Left kidney, N. None of them

Instructions for Assistant:
1) Analyze the image carefully and identify the

relevant organ.

2) Choose the correct answer from the given op-

tions.

3) Provide a short explanation for your answer,

clarifying the function of the chosen organ.

4) If none of the options are correct based on the

image, select ”None of them.”

5) Generate the segmentation mask for the se-

lected organ and provide segmentation informa-

tion (bounding box coordinates, organ label).

ASSISTANT:
Answer: K

Explanation: The stomach is responsible for breaking

down food using gastric acid, which helps in digestion.

The image shows the stomach, confirming it as the

correct answer.

Segmentation Information: Organ: Stomach, Bound-

ing Box Coordinates: (x1, y1), (x2, y2), Segmentation

Mask: Binary mask with 1 for stomach region, Organ

Label: K (Stomach)

Each data sample in the dataset includes an abdominal

image, a generated question, the correct organ label (from the

set of 13 organs or ”none of them” for irrelevant cases), and

a ground truth segmented mask of the organ in the image.

This combination of data is used to train the classification and

segmentation models, where the classification task identifies

the organ based on the question, and the segmentation task

focuses on accurately identifying the location of the organ

within the image.

Additionally, we leverage prompt engineering to enable

the LLaVA-Med model to generate detailed contextual infor-

mation about the specific organ and incorporate this under-

standing into the vision-language projection embedding. This

method enhances the precision of organ identification and

segmentation in medical imaging. The following prompt IV

initiates a segmentation task where an assistant analyzes an

image, identifies the correct organ based on a multiple-choice

question, and generates a segmentation mask.

TABLE IV: Comparison Table of Original, Question, Ground

Truth, and Prediction

Original (Images) Query Ground Truth Predictions

Question: Which organ is involved
in fat metabolism? Answer: Liver

Question: Which organ filters
waste from the blood to produce
urine? Answer: Kidney

Question: Which organ filters and
removes old red blood cells from
circulation? Answer: Spleen

Question: Which organ produces
digestive enzymes that break down
carbohydrates, fats, and proteins?
Answer: Pancreas

Question: Which organ is respon-
sible for breathing? Answer: None
of them

Question: Which organ stores bile
produced by the liver? Answer:
Gallbladder Predicted: Duodenum
Portion (Misclassified)

Then we train our model framework, finetune the specific

layers, and test our framework after 1000 training epochs.

Table III presents the Dice coefficients for various SAM-

based models after being trained on our dataset. The results

demonstrate the segmentation performance for organs such

as the aorta, liver, and kidneys, among others. MedSAM

achieved the highest overall Dice coefficient of 63.9, indicating

superior accuracy in organ segmentation tasks compared to

other methods.

A series of experiments are conducted to evaluate the

framework’s performance for our task. For each query, the

model was prompted to identify the relevant organ, generate

a segmentation mask, and compare its prediction with the

ground truth. The results provide insight into the model’s

performance and areas where misclassifications occurred in

Table IV.

We observed instances of misclassification in our model

framework, where it incorrectly segmented other organs due

to a lack of contextual understanding of user instructions.

To further evaluate our model’s performance, we assessed

the frequency of correct organ classifications based on user

queries. The results are illustrated in the confusion matrix

shown in Figure 2, highlighting the model’s accuracy and areas

for improvement.
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Fig. 2: Confusion matrix illustrating the frequency of correct

and incorrect organ classifications by the model based on user

queries

V. CONCLUSION

In this study, we presented an instruction-based medi-

cal image segmentation framework that addresses key chal-

lenges in user-guided segmentation, particularly in handling

false premises. Our model was tested on well-known ab-

dominal organ segmentation datasets, including FLARE22,

and demonstrated good accuracy and reliability. The use

of a pre-computed context cache from external resources

and similarity-based feature comparison further enhanced the

system’s ability to deliver refined, user-specific segmentation

outcomes. However, a current limitation of our system is that it

only supports the segmentation of a single organ based on user

queries. If a user provides an instruction involving multiple

organs (e.g., asking to segment both the stomach and liver

in one query), the model is not yet capable of handling this

request. Addressing this limitation is a key focus for future

work, where we plan to extend the system’s functionality

to support multi-organ segmentation in response to more

complex user queries. Looking ahead, our framework holds

great potential for more sophisticated medical imaging tasks

and could be integrated into clinical workflows, enhancing the

accuracy of diagnostic and treatment planning.
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