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Abstract 

 

The segmentation of major brain vessels is a critical aspect of medical analysis and clinical 

applications, particularly in the realm of diagnosing cerebrovascular disorders and devising 

surgical plans. Existing practices, often reliant on manual inspection or the use of Maximum 

Intensity Projection (MIP) applied to 3D Time-Of-Flight Magnetic Resonance Angiography 

(TOF-MRA) images, prove to be both time-consuming and susceptible to errors. In response 

to these challenges, this study introduces an innovative semi-supervised framework 

designed for cerebrovascular segmentation from 3D MRA images. The proposed framework 

adeptly harnesses the potential of unlabeled data by encouraging consistent predictions 

under diverse perturbations. Consisting of both a student model and a teacher model, this 

approach facilitates learning by minimizing segmentation and consistency losses. Notably, 

the method incorporates a sophisticated confident prediction-based scheme. This scheme 

allows the student model to progressively learn from meaningful and reliable targets, 

leveraging uncertainty information. In a series of comprehensive experiments, the proposed 

method has showcased remarkable performance gains, surpassing state-of-the-art semi-

supervised approaches. The results underscore the method's potential for effectively 

addressing the challenges inherent in semi-supervised problems associated with 

cerebrovascular segmentation. The achieved metrics, including an F1-Score of 81.30%, 

Dice coefficient of 81.01%, and Intersection over Union (IOU) of 62.73%, further 

emphasize the promising capabilities of this framework in enhancing the accuracy and 

efficiency of cerebrovascular segmentation.
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            CHAPTER I 
 

  Introduction 

 

1.1 Introduction 
 

Cerebrovascular diseases, which particularly focusing on the intricate landscape of the 

brain's vascular system. Stroke, as the second leading cause of global mortality, underscores 

the urgency of understanding and diagnosing cerebrovascular conditions. Ischemic stroke, 

aneurysms, arteriovenous malformations, carotid stenosis, and vessel occlusion all relate to 

disruptions in blood supply and vascular structures. The accurate depiction of 

cerebrovascular anatomy is pivotal for the early diagnosis and subsequent treatment of these 

conditions. 

In clinical practice, the segmentation of brain vessels emerges as a predictive tool for stroke 

events and plays a pivotal role in pre-surgical diagnostics. The importance of vascular 

anatomy is highlighted as it significantly impacts neurosurgeons and the broader healthcare 

system. This study has received support from the GIST Research Institute and the Ministry 

of Trade, Industry & Energy in Korea. 

Analyzing blood vessels proves challenging due to factors such as size, overlap, contrast 

with anatomical structures, and tortuosity. Noninvasive imaging modalities, including 

computed tomography (CT), magnetic resonance imaging (MRI), positron emission 

tomography (PET), and X-ray, are instrumental in cerebrovascular disease research. The 

focus on Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) within MRI is 

significant. TOF-MRA, a non-contrast enhanced modality, provides high spatial resolution 

for intracranial arteries, but challenges persist, especially in slow blood flow and small 

vessel areas. 

Addressing the need for automated systems, the study delves into the application of deep 

learning models for cerebrovascular segmentation. The complexities arise from the tubular 

and intricate nature of vessels, necessitating a 3D model for enhanced contextual 

information. The challenge lies in the scarcity of labeled 3D data, making the labeling of 

TOF-MRA data a time-consuming task. Traditional and deep learning approaches have been 
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explored, yet the study underscores the limited exploration in 3D cerebrovascular 

segmentation, presenting an opportunity for advancement in this domain. The ultimate aim 

is to design a 3D model that achieves fully automated segmentation, addressing the existing 

gaps in over-segmentation and missed segmentation of vessels. This research endeavors to 

contribute significantly to the understanding and diagnosis of cerebrovascular diseases, 

providing a foundation for future advancements in medical imaging and analysis. 

 

1.2 Problem Statement 

 

The overarching problem lies in the pivotal domain of cerebrovascular segmentation, a 

crucial process entailing the identification and delineation of blood vessels within the brain 

through medical imaging techniques, such as MRI or CT scans [1]. This segmentation holds 

paramount importance across various medical applications, notably in the realms of 

neurology and neurosurgery. The imperative for cerebrovascular segmentation [2] emanates 

from its instrumental role in assisting medical professionals in the diagnosis and treatment 

of diverse brain conditions. This, in turn, enables the identification of potential 

abnormalities, including aneurysms, stenosis, and arteriovenous malformations. Beyond 

diagnosis, cerebrovascular segmentation plays a multifaceted role [3], contributing to the 

planning of surgical procedures, determination of treatment strategies, and comprehensive 

assessment of overall brain vasculature health.  

In the realm of cerebrovascular segmentation, the integration of Computer-Aided methods 

has shown promise in alleviating the inherent challenges associated with manual 

segmentation. However, the existing landscape is marked by significant limitations that 

impede the realization of accurate and efficient segmentation processes. These limitations 

encompass various dimensions, from the reduction of human error to the complexities 

introduced by the labeling of 3D volume data. 

Human error and biases, prevalent in manual segmentation, persist as challenges even with 

Computer-Aided methods. Despite the potential for error reduction, these methods are not 

immune to inaccuracies, emphasizing the need for robust and reliable automated 

approaches. 
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The annotation costs associated with 3D volume data present a formidable barrier, both in 

terms of time and resources. High annotation costs underscore the complexity of labeling 

such volumetric data, hindering scalability and widespread adoption of segmentation 

methods. 

Cerebrovascular segmentation, in particular, faces performance challenges attributed to the 

intricate patterns inherent in vascular structures. Existing methods often struggle to capture 

the complexity of these patterns, leading to suboptimal segmentation outcomes. 

The scarcity of labeled annotations further compounds the segmentation problem. Limited 

availability of annotated datasets hampers the training of models, affecting their ability to 

generalize across diverse patient populations and imaging conditions. 

An additional challenge arises from the imbalance in class distribution within 

cerebrovascular segmentation datasets. The disparity in the number of samples across 

different vessel classes introduces biases, impacting the overall performance of 

segmentation models. 

Furthermore, the anxiety associated with overlapping vessels in smaller volume reshaping 

poses a significant constraint. The fear of losing critical information due to overlapping 

vessels limits the feasibility of resizing volumes, hindering adaptability in different clinical 

scenarios. 

Overfitting on a few labeled datasets is a recurrent issue in existing methods. The limited 

dataset size often leads to overfitting, compromising the model's ability to generalize to 

unseen data and reducing its effectiveness in real-world applications. 

In light of these multifaceted challenges, there is a critical need for an advanced 

segmentation framework that not only mitigates the limitations of current methods but also 

introduces innovative strategies to address complexities associated with human error, 

annotation costs, pattern capture, dataset scarcity, class imbalance, volume reshaping, and 

overfitting. This research seeks to pioneer a solution that transcends existing constraints, 

advancing the landscape of cerebrovascular segmentation and contributing to more accurate, 

scalable, and widely applicable methodologies in medical imaging. 
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1.3 Objectives 
 

The objectives of this research encompass a comprehensive exploration of cerebrovascular 

segmentation, aiming to address key challenges in medical imaging. Through innovative 

approaches, the research aims to enhance diagnostic reliability, automate segmentation 

processes, and leverage the benefits of semi-supervised learning. By tackling issues such as 

imbalanced class distribution, uncertainty awareness, and robustness against artifacts, the 

research endeavors to contribute to the advancement of medical image analysis, providing 

informed diagnostic insights for improved healthcare outcomes. The following are the 

specific objectives outlined: 

• To enhance diagnostic reliability, implement a semi-supervised segmentation 

approach, reducing human errors and biases in cerebrovascular diagnosis. 

• To automate segmentation, develop an automated process for accurate 

cerebrovascular structure segmentation, minimizing manual data labeling. 

• To effectively utilize unlabeled data, implement semi-supervised learning 

techniques to maximize segmentation performance through effective use of both 

labeled and unlabeled samples. 

• To improve generalization, enhance the segmentation model's capability for accurate 

segmentation across diverse training approach. 

• To ensure robustness against artifacts, design the segmentation approach to exhibit 

resilience against imaging artifacts, noise, and variations in imaging parameters. 

• To handle the challenges of reshaping the MRA volume data, implement patch-

based training and inference, introduce a distinctive approach involving the cropping 

of random patches during training and the subsequent reconstruction of the original 

volume during inference. 

• To provide informed diagnostic insights, offer clinicians accurate and detailed 

segmentation results  

• To optimize uncertainty awareness, introduce an advanced optimization process that 

considers uncertainties in the data, enhancing the model's robustness. 

• To handle imbalanced class problems, introduce a custom loss function to address 

challenges posed by imbalanced class distribution in cerebrovascular segmentation. 
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• To contribute to the advancement of medical image analysis, apply state-of-the-art 

techniques to cerebrovascular segmentation. 

• To effectively utilize semi-supervised learning, incorporate an effective semi-

supervised learning method, leveraging advantages offered by both labeled and 

unlabeled data for improved accuracy and robustness in segmentation. 

These are the crucial objectives of this thesis. 

1.4 Scope 

 

This study ambitiously navigates the intricate landscape of cerebrovascular segmentation, 

with a primary focus on the nuanced domain of magnetic resonance angiography (MRA) 

data. The scope is not merely confined to addressing the well-acknowledged challenges but 

extends to pioneering algorithmic innovations. One such groundbreaking contribution 

involves the introduction of custom loss functions, strategically designed to grapple with 

the inherent complexities of imbalanced class distribution in cerebrovascular segmentation. 

Furthermore, the research ventures into the domain of patch-based methodologies, 

introducing a transformative approach where random patches are judiciously cropped 

during training. This is complemented by an ingenious reconstruction of the original volume 

during the inference stage, thereby mitigating the often-intricate challenge associated with 

volume reshaping. The study transcends traditional boundaries by embracing the expansive 

realm of semi-supervised learning. Here, the research unfolds avenues to harness the 

untapped potential of both labeled and unlabeled data, envisioning an enhancement in 

segmentation performance by adeptly extracting meaningful insights from the rich tapestry 

of unlabeled samples. Additionally, the research paradigm introduces a pioneering concept 

of uncertainty-aware optimization, injecting a layer of sophistication to the model's 

architecture. This novel approach empowers the model to navigate uncertainties and 

ambiguities with resilience and acumen during the optimization process. The overarching 

impact of this research reverberates within the critical domain of medical imaging, 

specifically homing in on cerebrovascular disorders. The ultimate aim is to catalyze a 

paradigm shift in medical image analysis, envisioning a future where accurate diagnoses 

and improved patient care are the norm. As the study unfolds, it converges with the dynamic 

evolution of medical imaging practices, seamlessly integrating state-of-the-art 

computational methods into the intricate fabric of cerebrovascular image analysis. Through 



6 

 

these multifaceted endeavors, the research endeavors to redefine the boundaries of 

cerebrovascular segmentation, contributing profound insights that resonate across the 

expansive spectrum of medical image analysis. 

1.5 Unfamiliarity of the solution 
 

The unfamiliarity of cerebrovascular segmentation challenges has prompted the 

development of a novel and comprehensive methodology, poised to make significant 

contributions to the domain of medical image analysis. The contributions of this research 

unfold as innovative solutions to longstanding problems in the field. 

The research introduces a custom loss designed explicitly to address the imbalance class 

problem in cerebrovascular segmentation. This novel approach seeks to enhance the model's 

ability to handle diverse class distributions, ensuring more accurate and robust segmentation 

across varying anatomical structures. Recognizing the complexity of handling original 

volumes, the introduction of a patch-based training and inference approach represents a 

pioneering solution. By cropping random patches during training and reconstructing the 

original volume during inference, this methodology successfully addresses challenges 

associated with reshaping original volumes, providing a flexible and efficient strategy for 

model learning. 

The application of a semi-supervised teacher-student framework marks a paradigm shift in 

leveraging both labeled and unlabeled data. The innovative incorporation of two identical 

models, student and teacher, introduces a mean teacher concept, ensuring comprehensive 

model learning. This approach not only optimizes the use of available labeled data but also 

harnesses the potential of unlabeled samples for improved segmentation performance. 

Incorporating awareness of uncertainty into the optimization process represents a 

groundbreaking approach to enhance model robustness. By introducing uncertainty-aware 

criteria for updating consistency loss during the training of unlabeled data, the research 

ensures that the model learns from more reliable targets. This addresses challenges 

associated with class imbalance, offering a new dimension to semi-supervised learning 

robustness. 

The findings or unfamiliarity of this research lies in its holistic and meticulous approach to 

addressing complex challenges in cerebrovascular segmentation. From handling class 
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imbalances to redefining training strategies, each contribution introduces innovative 

solutions that have the potential to reshape the landscape of medical image analysis. The 

importance of these contributions extends beyond technical advancements, promising more 

accurate and reliable diagnoses in cerebrovascular disorders. As a result, the research not 

only fills critical gaps in current methodologies but also sets the stage for transformative 

progress in medical imaging practices, ultimately leading to improved patient outcomes. 

 

1.5 Project Planning 

The project on cerebrovascular segmentation addresses societal concerns by raising 

awareness about marine conservation and advancing research, while adhering to health and 

safety regulations and legal requirements. It also values cultural perspectives and potential 

effects on nearby communities. 

This table 1.1 provides a visual representation of the project timeline and tasks in the form 

of a Gantt chart. This chart effectively illustrates the sequential order and duration of each 

task, offering a clear overview of the project’s schedule and milestones. 

Table 1.1: Gantt Chart for Project Progress and Planning 
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1.6 Applications of the work 

The developed methodology in this thesis presents various applications with significant real-

world implications in the medical domain: 

Neurological Disorder Diagnosis: 

Accurate segmentation facilitates the identification of neurological disorders such as 

aneurysms, arteriovenous malformations, and arteriosclerosis, enabling timely and precise 

interventions.  

Vascular Disease Assessment: 

The method allows for non-invasive evaluation of vascular conditions, including stenosis, 

occlusions, and anomalies, providing essential insights for effective disease assessment.  

Pre-operative Planning: 

Surgeons can enhance pre-operative planning by gaining a comprehensive understanding of 

vascular anatomy, aiding in the formulation of precise surgical strategies.  

Post-interventional Evaluation: 

Assessing treatment outcomes becomes more efficient, allowing for the timely adjustment 

of interventions based on accurate cerebrovascular segmentation.  

Quantitative Analysis: 

The methodology enables accurate measurements of vascular structures, contributing to 

quantitative analyses essential for medical research and studies.  

Clinical Decision Support: 

Medical professionals’ benefit from accurate vascular data, providing valuable support for 

treatment planning and decision-making in clinical settings.  

Education and Training: 

Visualizing complex vascular anatomy aids medical education by providing detailed and 

accurate representations for educational and training purposes.  
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Research Acceleration: 

The automated analysis expedites neuroscience and vascular research by offering a reliable 

and efficient tool for researchers.  

Workflow Efficiency: 

The automated segmentation contributes to increased workflow efficiency, saving time, and 

minimizing errors in medical image analysis. 

Longitudinal Monitoring: 

The methodology allows for the tracking of cerebrovascular changes over time, facilitating 

longitudinal monitoring for disease progression and treatment assessment. This has potential 

implications for conditions like stroke prediction and other impactful areas in medical 

research. 

1.7 Organization of the report 

The structure of this thesis is organized into distinct chapters, each serving a specific 

purpose: 

Chapter 1: Introduction 

This chapter initiates the exploration by providing a comprehensive overview of the research 

background, motivation, and objectives. It introduces the problem statement, outlines the 

scope of the study, identifies the necessary tools, and offers a brief preview of the overall 

thesis structure. 

Chapter 2: Literature Review 

In this section, existing literature pertinent to cerebrovascular segmentation, including 

active contour models, statistical methods, and neural network approaches, is thoroughly 

reviewed. The chapter aims to establish context, identify gaps in current knowledge, and 

highlight potential avenues for innovation. 

Chapter 3: Methodology 

Detailing the methodology employed in the research, this chapter elaborates on data 

collection, preprocessing steps, and the implementation of the semi-supervised framework 
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for cerebrovascular segmentation. It covers the development of the uncertainty-aware 

teacher-student model and associated algorithms. 

Chapter 4: Implementation, Results, and Discussion 

Combining aspects of implementation, results, and discussions, this chapter provides 

insights into the experimental setup, evaluation metrics, dataset, and the performance of the 

proposed semi-supervised method. It addresses societal, health, safety, environmental, 

ethical, legal, and cultural considerations associated with the research. 

Chapter 5: Societal, Health, Environmental, Safety, Ethical, Legal, and Cultural Issues 

Delving into broader societal implications, this chapter examines the impact of 

cerebrovascular segmentation on medical diagnoses, patient outcomes, and ethical 

considerations. It also discusses the legal and regulatory landscape and considers cultural 

aspects in the application of medical image analysis. 

Chapter 6: Addressing Complex Engineering Problems and Activities 

Focused on engineering challenges encountered, this chapter details the technical 

complexities, algorithmic optimizations, and scalability concerns during the development 

of the semi-supervised framework. It outlines activities undertaken to overcome these 

challenges and suggests potential solutions. 

Chapter 7: Conclusion 

Providing a cohesive summary, this chapter encapsulates key findings and contributions, 

offers recommendations for future research directions, and concludes with reflections on the 

broader significance of the study in advancing medical image analysis. 

The structure of this thesis is organized into these rearrangements and chapters, where the 

detailed study obtained into these chapters. 
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Chapter II 

 

Literature Review 

 

2.1 Introduction 

The field of cerebrovascular segmentation has witnessed significant advancements, driven 

by the quest for accurate and efficient diagnostic tools to aid radiologists and neurosurgeons 

in providing precise diagnoses. Among the multitude of approaches, three prominent 

methods have emerged as key contenders: the Active Contour Model, Statistical Methods, 

and Neural Network Methods. These methodologies play a pivotal role in addressing the 

complexities of cerebrovascular segmentation, each offering unique advantages and 

challenges. The following sections delve into a comprehensive exploration of these 

approaches, unraveling their intricacies and highlighting their contributions to the evolving 

landscape of medical image analysis. 

2.2 Literature Review 
 

In the realm of cerebrovascular segmentation, the Active Contour Model emphasizes 

geometric analysis of Hessian’s eigensystem, integrating vessel-enhancing diffusion for 

enhanced vascular structure delineation. Statistical Methods, exemplified by MAP-MRF 

models, leverage stochastic approaches to address challenges in spatial context and data 

likelihood. The Neural Network Method, employing architectures like U-Net and 

convolutional autoencoders, harnesses deep learning for intricate tasks, showcasing 

advancements in vessel segmentation with a focus on three-dimensional context and 

hierarchical representations. 

 

2.2.1 Active contour model (ACM): 

Manniesing et al. [4] propose a vessel segmentation method using vessel-enhancing 

diffusion. They employ a scale-space representation of vessel structures, combining a 

smooth vessel filter based on a geometric analysis of the Hessian’s eigensystem to enhance 
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vascular structures. This paper [5] introduces CURVES, a method for vessel segmentation 

using curve evolution. The model evolves iteratively to minimize an energy criterion based 

on both intensity values in the image and local smoothness properties of the vessel wall. 

Forkert et al. [6] integrate fuzzy vessel enhancement into a level-set formulation for 3D 

cerebrovascular segmentation. The model incorporates an additional vesselness force and 

uses the similarity between gradient directions and the eigenvectors of the vesselness filter 

to influence the internal energy weights. Lv et al. [7] propose a blood vessel segmentation 

algorithm called Centerline Constrained Level Set (CC-LS). This method utilizes centerline 

information to enhance the evolution of the level set, improving efficiency and extraction 

accuracy. Bresson et al. [8] contribute to the active contour/snake model, presenting a fast-

global minimization approach. The paper focuses on minimizing the energy of the active 

contour model for efficient segmentation. Cheng et al. [9] propose an accurate vessel 

segmentation method using a constrained B-snake. They apply precise shape and size 

constraints on the cross-section of blood vessels to avoid disconnection and incomplete 

segmentation, although sensitivity to initialization is noted. Zhao et al. [10] provide a review 

on segmentation of blood vessels, comparing rule-based and machine-learning-based 

methods. The paper discusses different approaches in the literature for accurate vessel 

segmentation. This work [11] focuses on the segmentation of brain blood vessels in 3-D CT 

angiography images. The authors propose a method based on projections, aiming to 

accurately delineate the vascular structures in the brain. The proposed technique aims to 

improve the accuracy of segmentation in this medical imaging context. This research [12] 

addresses the extraction of vessel networks, particularly focusing on the integration of 

multiview projection and a phase field model. The authors present a method for extracting 

detailed vessel structures by leveraging information from multiple views. 

2.2.2 Statistical method (SM): 

Wilson and Noble [13] propose an adaptive segmentation algorithm for time-of-flight 

Magnetic Resonance Angiography (TOF MRA) data. They utilize a modified Expectation 

Maximization (EM) algorithm to estimate parameters based on a physical model of blood 

flow, but note the need for improvement in representing the richness of blood vessels. 

Hassouna et al. [14] focus on cerebrovascular segmentation from TOF using stochastic 

models. They employ a Maximum A Posteriori-Markov Random Field (MAP-MRF) model, 

addressing challenges related to neighborhood system limitations and parameter balancing 
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for spatial context and data likelihood. Zhou et al. [15] propose a statistical segmentation 

method based on MAP-MRF for brain magnetic resonance angiography images. They 

introduce a multi-pattern neighborhood system to address difficulties in differentiating 

subtle changes within the neighborhood and propose an approximation of the regularization 

coefficient for improved results. Taher et al. [16] establish a prior model using Markov-

Gibbs random field (MGRF) and employ an EM-based algorithm to approximate linear 

combinations of discrete Gaussian (LCDG). This approach enhances the representation of 

cerebral vessels in TOF-MRA images. Zhang et al. [17] propose a hybrid level-set method 

for medical image segmentation. This method utilizes new techniques to improve the 

accuracy of segmentation without requiring explicit initialization or parameter setting. Wen 

et al. [18] present a statistical cerebrovascular segmentation algorithm employing particle 

swarm optimization. This novel method aims to improve the segmentation accuracy by 

utilizing optimization techniques. Gao et al. [19] propose a fast and fully automatic method 

for cerebrovascular segmentation on TOF MRA images. The method aims to achieve 

efficient and accurate segmentation without manual intervention. Lu et al. [20] introduce a 

vessel segmentation method for multi-modality angiographic images. The approach 

involves multi-scale filtering and statistical models to enhance the segmentation accuracy. 

2.2.3 Neural Network method (NNM): 

Phellan et al. [21] propose a method for cerebral vascular segmentation using a 

convolutional neural network (CNN). Binary images extracted from axial, coronal, and 

sagittal directions serve as labels. The CNN is employed to segment cerebral vascular 

images, focusing on three-dimensional context information. Livne et al. [22] utilize a U-Net 

deep learning framework for high-performance vessel segmentation in patients with 

cerebrovascular disease. The method considers each slice of Magnetic Resonance 

Angiography (MRA) for segmentation, incorporating three-dimensional context. Zhang et 

al. [23] propose a segmentation method, RE-Net, for cerebral vessels in MRA using reverse 

edge attention. The model leverages prior edge information and introduces reverse attention 

to enhance the segmentation of cerebral vessels. Mou et al. [24] introduce CS2-Net, utilizing 

self-attention mechanisms for channel and spatial attention to achieve segmentation of 

tubular structures, including cerebral vessels. The method aims to learn rich hierarchical 

representations of tubular structures. Wang et al. [25] propose JointVesselNet, incorporating 

maximum intensity projection (MIP) into the volume image learning process of 3D 
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magnetic resonance angiography (MRA) for enhanced overall performance in extracting 3D 

vascular structures. Chen et al. [26] leverage prior knowledge of the similarity in tree 

structures between 2D and 3D blood vessels. They employ an adversarial learning method 

using existing 2D blood vessel annotations to supervise the fidelity of the MIP image of the 

3D segmentation result. Zheng et al. [27] focus on automatic pulmonary nodule detection 

in CT scans using convolutional neural networks (CNNs) based on maximum intensity 

projection. The method utilizes varying plate thicknesses in MIP images to augment spatial 

information and discriminate between nodules and blood vessels. Chen et al. [28] propose 

a 3D intracranial artery segmentation method using a convolutional autoencoder. The model 

aims to extract cerebral vessels by employing three-dimensional convolutions. Tetteh et al. 

[29] introduce DeepVesselNet, a comprehensive approach for vessel segmentation, 

centerline prediction, and bifurcation detection in 3D angiographic volumes. The method 

incorporates deep learning techniques for enhanced segmentation accuracy. Çiçek et al. [30] 

present a 3D U-Net for learning dense volumetric segmentation from sparse annotation. The 

method addresses the challenge of obtaining complete manual labels and aims for end-to-

end segmentation directly from MRA images with sparse labels. Phellan and Forkert [31] 

compare vessel enhancement algorithms applied to time-of-flight MRA images for 

cerebrovascular segmentation. The study assesses different methods and their effectiveness 

in enhancing cerebral vessels. 

 

2.2 Discussion and Comparisons Between the Existing Work 

In this section, an in-depth exploration and comparative analysis of existing methodologies 

in cerebrovascular segmentation are presented. The discussion aims to unveil the strengths, 

limitations, and challenges inherent in each approach. Here, an exploration serves as a 

comprehensive resource for researchers and practitioners seeking a nuanced understanding 

of current cerebrovascular segmentation methods. Through a comparative lens, the objective 

is to identify research gaps, offering insights that can propel future innovations and 

contribute to the continual advancement of accurate and efficient segmentation techniques 

in medical imaging. 

Certainly, here's the table 2.1 format for research gap or limitations and challenges of 

existing works those are introduced for segmenting blood vessel from the MRA data: 
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Table 2.1: Comparison Between Existing Researches of Cerebrovascular Segmentation 

 

Paper Type Focused Research Gap 

Forkert et 

al. [6] 

ACM Limited consideration of 

vesselness force 

Additional vesselness force, 

similarity between gradient 

directions 

Lv et al. 

[7]  

ACM Sensitivity to initialization 

noted 

Utilizes centerline information for 

improved efficiency 

Bresson et 

al. [8] 

ACM Limited focus on 

minimizing energy for 

efficient seg- 

mentation 

Fast global minimization

 approach 

Zhao et al. 

[10] 

ACM Comparative  analysis of 

rule-based and machine- 

learning-based methods 

Overview and comparison of 

different  approaches  for  

accurate 

segmentation 

D. Babin et 

al. [11] 

ACM Limited details on the seg- 

mentation method 

Method based on projections for 

accurate delineation of vascular 

structures 

S. Zhao et 

al. [12] 

ACM Limited details on the seg- 

mentation method 

Integration of multiview 

projection and phase field model 

for de- tailed vessel structures 

Wilson and 

Noble [13] 

SM Need for improvement in 

representing the richness of 

blood vessels 

Utilizes a modified Expectation 

Maximization (EM) algorithm 

Hassouna et 

al. [14] 

SM Need for improvement in 

representing the richness of 

blood vessels 

Utilizes a modified Expectation 

Maximization (EM) algorithm 

Zhou et al. 

[15] 

SM Difficulties in differentiating 

subtle changes within 

the neighborhood 

Multi-pattern neighborhood 

system, approximation of 

regularization coefficient 

Taher et al. 

[16] 

SM Challenges in approximating 

linear combinations of 

discrete Gaussian 

Utilizes an EM-based algorithm 

for approximating linear 

combinations 

Zhang et al. 

[17] 

SM Improved accuracy without 

explicit initialization or 

parameter setting 

Utilizes new techniques for accu- 

rate segmentation without explicit 

initialization 
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Gao et al. 

[19] 

SM Achieving efficient and ac- 

curate segmentation without 

manual intervention 

Fast and fully automatic 

segmentation without manual 

intervention 

Lu et al.  

[20] 

SM Multi-scale filtering and 

statistical models for 

enhanced accuracy 

Utilizes multi-scale filtering and 

statistical models for improved 

segmentation accuracy 

Zhang et al. 

[23] 

NNM Limited exploration of the 

robustness of RE-Net in 

handling variations in image 

quality or noise levels in 

different MRA datasets 

Leverages reverse edge attention 

for enhanced segmentation of 

cerebral vessels 

Mou et al. 

[24] 

NNM Need for comprehensive 

evaluation regarding the 

generalizability of CS2-Net 

across diverse datasets and 

imaging conditions 

Utilizes self-attention mechanisms 

for segmentation of tubular 

structures 

Wang et al. 

[25] 

NNM Limitations when 

incorporating maximum 

intensity projection (MIP) 

into the learning  process  for  

3D 

MRA images 

Incorporates maximum intensity 

projection for enhanced overall 

performance 

Chen et al. 

[26] 

NNM Insufficient exploration of 

the sensitivity of the ad- 

versarial learning method to 

variations in the quality 

Utilizes adversarial learning 

method based on 2D blood vessel 

annotations 

Zheng et al. 

[27] 

NNM Limited investigation into 

the impact of varying plate 

thicknesses in MIP images 

on the accuracy 

Utilizes adversarial learning 

method based on 2D blood vessel 

annotations 

Chen et al. 

[28] 

NNM Challenges in using 

convolutional autoencoder 

for 3D 

artery segmentation 

Extracts cerebral vessels using 

three-dimensional convolutions 

Tetteh et al. 

[29] 

NNM Implementation challenges 

of DeepVesselNet in diverse 

angiographic volumes 

Incorporates deep learning 

techniques for comprehensive 

vessel 

analysis 
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CHAPTER III 

 

Methodology 

 

3.1 Introduction: 

The objective of this study is to develop a semi-supervised model for accurate 3D 

cerebrovascular semantic segmentation. The proposed approach integrates a supervised 

autoencoder and an unsupervised mechanism to leverage labeled and unlabeled data 

effectively. It represents a comprehensive approach to cerebrovascular segmentation, 

leveraging innovative strategies to overcome existing challenges in medical image analysis. 

This methodology integrates advanced techniques, including custom loss functions, patch-

based methodologies, and uncertainty-aware optimization, to enhance the accuracy and 

robustness of segmentation outcomes. Embracing the power of semi-supervised learning, 

the methodology optimally utilizes both labeled and unlabeled data, addressing the scarcity 

of annotated datasets. By strategically combining these elements, the methodology aims to 

redefine the landscape of cerebrovascular segmentation, contributing to a paradigm shift in 

medical image analysis and ultimately improving diagnostic precision and patient care. 

3.1.1 Data Preprocessing: 
 

The data preprocessing pipeline before feeding into the proposed model involves several 

essential steps, each governed by specific parameter values tailored to enhance the quality 

and relevance of medical imaging data.  

Firstly, the spatial resolution is standardized using bilinear interpolation, with a pixel 

dimension set to (1.5, 1.5, 1.0). This ensures a consistent and isotropic representation of the 

volumetric images. The intensity scaling is applied to normalize voxel values, with a_min 

and a_max set to -200 and 200, respectively, bringing the voxel values into the range of 0.0 

to 1.0. Foreground cropping focuses on relevant anatomical structures by removing 

unnecessary background regions. For this, a spatial size of [384, 384, 128] is specified, 

providing a standardized dimension for the volumes. Additionally, during training, a 

random crop operation is introduced with a spatial size of (128, 128, 64) and 16 samples, 
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aiming to augment the dataset and improve the model's ability to handle diverse anatomical 

variations. Sequential patch extraction during testing utilizes a patch size of (128, 128, 64) 

to systematically extract patches from the volumes, facilitating a comprehensive evaluation 

of the model's performance across different spatial regions 

The batch sizes for training and testing are set to 4 and 1, respectively, influencing the 

number of samples processed in each iteration. Moreover, the random seed is set to 0 to 

ensure the reproducibility of the experiments. 

These parameter values collectively contribute to the effectiveness of the preprocessing 

pipeline, ensuring standardized input data, addressing class imbalances, and providing the 

model with diverse and representative examples for robust learning and accurate 

predictions. 

 

3.1.2 Overall Flowchart: 
 

The workflow commences with the acquisition of original volume and corresponding mask 

data, a critical foundation for subsequent processing. These datasets undergo meticulous 

data preprocessing, creating distinct sets of labeled and unlabeled data that form the 

backbone of the methodology. The declaration of the autoencoder model follows, featuring 

a carefully chosen loss function and optimizer to guide its learning process. 

Supervised model training ensues, leveraging labeled data to optimize masks and minimize 

loss through a well-defined training process. A pivotal moment arrives with the initialization 

of a semi-supervised model, employing the innovative Teacher-Student architecture. 

Unlabeled data is then introduced into the training pipeline, guiding the model to enhance 

its segmentation capabilities. An additional layer of sophistication is introduced through 

confident awareness training, refining the semi-supervised model's performance by focusing 

on areas of high confidence. This strategic refinement contributes to the overall efficacy of 

the segmentation approach. 

Figure 3.1 serves as a visual guide to this intricate workflow, portraying the journey from 

the raw input data through the stages of autoencoder and supervised training to the initiation 

and fine-tuning of a semi-supervised model.  
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 Figure 3.1: Overall Working Flow of the Study of Cerebrovascular Segmentation 

The culmination involves a rigorous evaluation of performance metrics and compelling 

visualizations, providing a comprehensive assessment of the methodology's effectiveness in 

cerebrovascular segmentation. 

 

3.2 Detailed methodology: 
 

The section on detailed methodology focuses on evaluating three distinct architectures. Each 

architecture represents a unique approach to address specific challenges in the pro- posed 

research. The evaluation encompasses comprehensive analyses of their performance, 
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strengths, and limitations, providing valuable insights into their suitability for the intended 

application. 

 

3.2.1 Supervised Training: 
 

The labeled volumes and their corresponding ground truth were initially utilized for training 

various 3D autoencoder architectures. Following a comparative analysis, the nn-Unet 

architecture demonstrated superior performance, prompting its selection for the supervised 

segmentation autoencoder framework. In the chosen architecture, the cross-entropy and loss 

dice focal loss function played a pivotal role in optimizing the segmentation process. 

The cross-entropy loss, a standard choice for classification tasks, effectively quantifies the 

dissimilarity between predicted probability distributions and actual class distributions. 

Specifically, it calculates the logarithmic loss between the predicted segmentation output 

and the ground truth labels. In the context of the nn-Unet architecture, the cross-entropy loss 

function facilitated the training process by penalizing deviations from the true segmentation, 

encouraging the model to produce probability distributions that closely align with the 

provided ground truth. The DiceFocal loss function operates by emphasizing the accurate 

classification of challenging regions, thereby mitigating the impact of misclassifying 

background or easily discernible regions. It achieves this by incorporating a modulating 

factor from the Focal loss, which dynamically adjusts the contribution of each voxel during 

the training process. This adaptive weighting mechanism allows the model to focus on areas 

where traditional loss functions might be less effective. 

Figure 3.2 shows the working methodology of the nn-Unet architecture involved encoding 

the input volumes into a latent space representation through a series of convolutional and 

pooling layers. Subsequently, the decoder network reconstructed the segmented output from 

this latent representation using transposed convolutions. The cross-entropy loss function 

was then applied to measure the dissimilarity between the predicted segmentation output  
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Figure 3.2: Visualization of Supervised Training with nn-Unet for mask prediction 

and computation of supervised loss  

and the ground truth labels. Through iterative optimization, the nn-Unet architecture learned 

to capture and replicate the intricate features present in the labeled volumes, ultimately 

achieving superior segmentation accuracy in comparison to alternative 3D autoencoder 

architectures. 

3.2.2 Semi-supervised Teacher Student Framework: 
 

The proposed Semi-supervised Teacher-Student Framework aims to address the challenge 

of limited labeled volumes by incorporating unlabeled data for model training. To prevent 

overfitting due to the scarcity of labeled volumes, a semi-supervised approach is adopted. 

This involves training the labeled volumes in a supervised manner, while the unlabeled 

volumes are trained in an unsupervised manner. 

The framework utilizes two identical models, referred to as the student and teacher models. 

Initially, the student model, based on the nn-Unet architecture, is pretrained as the primary 

model. The teacher model is an identical counterpart to the student model and is gradually 

updated with the exponential moving average (EMA) of the student model's weights, 

introducing a Mean Teacher concept. 

The training process involves the following steps: 

1. Supervised Training (Labeled Data): The student model is trained in a supervised manner 

using labeled data, optimizing the Dice Focal loss based on the ground truth. 

2.Unsupervised Training (Unlabeled Data): Unlabeled data is passed to the student model, 

generating a prediction volume mask. Simultaneously, the unlabeled data is augmented with 

Labeled Volume Predicted 

Mask 

Ground Truth Lsup 

nn-Unet 
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noise and passed to the teacher model, generating a pseudo volume mask. The student model 

then updates by calculating the consistency loss, which is the mean squared error (MSE) 

between the predicted masks from the student and teacher models. 

3. Exponential Moving Average (EMA) Update: The teacher model's weights are updated 

with the EMA of the student model's weights. The EMA introduces a slower convergence 

towards the student model, enhancing the stability of the training process. 

The mathematical formulation of the consistency loss is given by: 

𝐿𝑐(𝑓,  𝑓
′) =

1

𝑣
𝛴𝑣(𝑓 − 𝑓𝑣

′)2 

Here, f and f' represent the predictions of the student and teacher models, The framework 

effectively combines supervised and unsupervised learning, leveraging the strengths of 

labeled and unlabeled data. The utilization of consistency loss, EMA, and uncertainty 

estimation enhances the robustness of the model, enabling it to learn from both labeled and 

unlabeled data effectively. The proposed framework provides a comprehensive strategy for 

addressing the challenges posed by limited labeled volumes in the context of cerebral 

vascular segmentation. 

Figure 3.3: Visualization of Semi-Supervised Training with Teacher Student framework for 

mask prediction and computation of supervised loss  

Labeled 

Volume 

Predicted Mask 

Ground Truth Lsup 

nn-Unet Student 

nn-Unet Teacher 

Unlabeled 

Volume 

Pseudo Generated 

Mask 

EMA 
 L

C 
 

        (1) 
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The figure 3.3 illustrates the model’s unique combination of super- vised and unsupervised 

learning, effectively leveraging both labeled and unlabeled data. Key components include 

consistency loss, Exponential Moving Average (EMA), and uncertainty estimation, 

enhancing the model’s robustness for cerebral vascular segmentation. 

 

3.2.3 Semi-supervised Training Considering Uncertainty: 
 

In the context of the proposed Semi-supervised Teacher-Student Framework, the third 

portion focuses on a semi-supervised approach that takes uncertainty into consideration, 

particularly for handling unlabeled data. The key idea is to use the pseudo volume mask 

generated by the teacher model as the ground truth for the student model when dealing with 

unlabeled data. However, due to the class imbalance problem, this approach may lead to 

misleading updates. To address this issue, the model introduces a threshold or entropy 

criteria, allowing updates only for pixels with a certain probability or lower entropy. 

The detailed description of this semi-supervised approach considering uncertainty is as 

follows: 

1. Pseudo Ground Truth for Unlabeled Data: For unlabeled data, the student model considers 

the pseudo volume mask generated by the teacher model as the ground truth. This pseudo 

mask is used for training the student model on unlabeled volumes. 

2. Mitigating Class Imbalance: Acknowledging the class imbalance problem, the model 

introduces a criterion based on the classification probability or entropy. If a pixel's 

classification probability is greater than the specified threshold, the consistency loss is not 

optimized, and parameters are not updated. Conversely, if the probability is below the 

threshold, the consistency loss is updated, allowing the teacher model to guide the student 

model only on confident predictions. 

3. Consistency Loss Update: The consistency loss, calculated as the voxel-level mean 

squared error (MSE) loss between the predictions of the teacher and student models, is 

selectively updated for pixels meeting the probability or entropy criteria. This ensures that 

the training process focuses on confident predictions, mitigating the impact of class 

imbalance in the unlabeled data. 
        (2) 
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𝐿𝑐−𝑢(𝑓,  𝑓
′) =

1

𝑣
𝛴𝑣(𝑢𝑣 < 𝐻) ∘ (𝑓 − 𝑓𝑣

′)2 

Here, u is the estimated uncertainty, V is the total number of voxels, and H is a threshold 

for selecting the most certain targets. 

4. Overall Architecture: The rest of the architecture remains consistent with the previously 

described Semi-supervised Teacher-Student Framework. Two identical models, the student 

and teacher, are trained using the mean teacher strategy with exponential moving average 

(EMA) weights. The training involves supervised and unsupervised components, utilizing 

labeled and unlabeled data, respectively. The overall approach leverages uncertainty-aware 

self-ensembling mean teacher framework, incorporating uncertainty estimation and guided 

consistency loss for improved robustness in semi-supervised learning. 

By introducing uncertainty-aware criteria for updating consistency loss during the training 

of unlabeled data, the model ensures that the student model learns from more reliable targets, 

addressing challenges associated with class imbalance and enhancing the overall robustness 

of the semi-supervised learning framework. 

 

Figure 3.4: Visualization of Semi-Supervised Training with Teacher Student 
framework considering Uncertainty 
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The figure 3.4 incorporates uncertainty-aware self-ensembling in training unlabeled data. It 

leverages a mean teacher strategy with selective consistency loss updates based on 

classification probability or entropy criteria, addressing class imbalance challenges for 

improved robustness. 

Loss and optimization: 

In the proposed semi-supervised cerebrovascular segmentation model, two primary types of 

losses are employed during training: segmentation loss (Lseg) and consistency loss (Lcon). 

The segmentation loss measures the disparity between the predicted and ground truth labels, 

optimizing the model for accurate cerebrovascular segmentation. On the other hand, the 

consistency loss ensures stability and robustness by minimizing differences between the 

predictions of the student and teacher models under various perturbations. 

For optimization, Stochastic Gradient Descent (SGD) is utilized as the optimization 

algorithm. SGD updates the model parameters in the direction that minimizes the overall 

loss. Adaptive learning rate strategies may be incorporated to fine-tune the optimization 

process. The combination of segmentation and consistency losses, coupled with SGD 

optimization, contributes to the effective learning and convergence of the model, enhancing 

its ability to perform accurate cerebrovascular segmentation in a semi-supervised setting. 

 

Training and Testing Process: 

 

In the training process of our proposed semi-supervised cerebrovascular segmentation 

model, the publicly available dataset of 3D TOF-MRA images, TubeTk is prepared and split 

into training, validation, and test sets. The framework, consisting of a student and teacher 

model, is designed with segmentation and consistency loss functions. A confident 

prediction-based scheme is implemented for uncertainty-aware learning. The model 

undergoes iterative training epochs, optimizing parameters through backpropagation using 

both labeled and unlabeled data. Performance is evaluated on the validation set using metrics 

like Dice coefficient and IoU score, with hyperparameters refined accordingly. In the testing 

process, the trained model is assessed on the test set, and metrics are calculated for 

quantitative evaluation. Visual inspections and comparisons with baselines are performed 

to analyze the model's accuracy and effectiveness. The proposed model demonstrates its 
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potential through robust performance, leveraging unlabeled data for improved 

cerebrovascular segmentation. 

 

3.3 Conclusion: 
 

The proposed semi-supervised framework for cerebrovascular segmentation from 3D MRA 

images utilizes unlabeled data efficiently, promoting consistent predictions through a 

student-teacher model. By integrating a confidence-aware scheme based on uncertainty 

information, the framework supports gradual learning from reliable targets. Experimental 

results exhibit superior performance compared to state-of-the-art semi-supervised methods, 

highlighting the approach's potential in addressing challenges related to limited labeled data 

in medical image segmentation tasks. The methodology signifies advancements in 

leveraging unlabeled data, offering a promising avenue for improving segmentation 

accuracy in clinical applications. 
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CHAPTER IV 

 

Implementation, Results and Discussions  

4.1 Introduction 
 

The implementation section details the experimental setup, encompassing the choice of 

tools such as PyTorch, FSL, ITK-SNAP, and MONAI, operating in a Windows 

environment. The dataset, TubeTk, obtained from 110 healthy patients, includes TOF-MRA 

images converted to NIfTI format using TubeTK. The Monai library is utilized in addition 

to PyTorch for implementation. Evaluation metrics encompass Dice coefficient, IoU score, 

F1 score, providing a comprehensive assessment. The dataset is split for training, validation, 

and testing. Results include quantitative metrics, qualitative examples, and a detailed 

analysis, demonstrating the achievement of objectives outlined in the introduction. Financial 

analyses and budget planning are outlined for transparency and completeness, potentially 

detailed in this section. 

4.2 Experimental Setup 
 

The experimental environment for the cerebrovascular segmentation study incorporates a 

sophisticated hardware setup, featuring an Nvidia GeForce RTX 3080 GPU for accelerated 

deep learning tasks, coupled with a multi-core processor and substantial RAM capacity. The 

study is conducted on a Windows operating system, utilizing PyTorch and the MONAI 

(Medical Open Network for AI) library as primary frameworks for efficient model 

development and training. The MONAI library, tailored for medical imaging applications, 

provides specialized tools and workflows, enhancing the study's focus on cerebrovascular 

segmentation. Git is employed for version control, ensuring traceability and collaboration 

in code development. FSL (FMRIB Software Library) is seamlessly integrated into the 

workflow for skull stripping, a critical preprocessing step that improves the accuracy of 

subsequent segmentation tasks. Additionally, ITK-SNAP facilitates 3D volume 

visualization, offering valuable insights into the anatomical structures of the brain 

vasculature. Python-based libraries, including NumPy, Pandas, Matplotlib, and Scikit-learn, 

contribute to data manipulation, analysis, and machine learning evaluations. The MONAI 
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library further supports diverse data augmentations, enhancing the dataset's variability for 

robust model training. This comprehensive experimental environment, encompassing 

PyTorch, MONAI, Windows OS, FSL, and ITK-SNAP, ensures a robust, transparent, and 

reproducible investigation into semi-supervised cerebrovascular segmentation using 

advanced deep learning methodologies. 

4.3 Evaluation Metrics 
 

Certainly, there are four evaluation metrics used for cerebrovascular volume segmentation: 

 

1. Dice Coefficient Score (Dice Similarity Coefficient): 

𝐷ⅈ𝑐ⅇ =
2 |𝐴 ⋂ 𝐵|

|𝐴| + |𝐵|
 

The Dice coefficient assesses the agreement between the predicted A and ground truth B 

segmentation masks of cerebral vessel. It quantifies the spatial overlap by considering the 

ratio of twice the intersection area to the sum of the areas of the predicted and ground truth 

regions. A Dice coefficient of 1 indicates perfect overlap, while 0 indicates no overlap. 

𝐷ⅈ𝑐ⅇ =
2 ×  Volume of Intersection

Volume of Predicted Vessel Mask +  Volume of Ground Truth Region
 

The Dice coefficient quantifies the spatial overlap between the predicted and ground truth 

cerebrovascular segmentation masks, providing insight into the accuracy of vessel de- 

lineation. 

2. Intersection over Union (IoU) Score (Jaccard Index): 

𝐼𝑜𝑈 =
 |𝐴 ⋂ 𝐵|

|𝐴| ⋃ |𝐵|
 

 

The IoU score, also known as the Jaccard Index, measures the similarity between the 

predicted and ground truth regions. It calculates the ratio of the intersection area to the union 

area of the two sets. IoU ranges from 0 to 1, with 1 indicating perfect overlap and 0 

indicating no commonality. So, 

𝐼𝑜𝑈 =
 Volume of Intersection of Predicted and Ground Truth Region 

Volume of Union of Predicted and Ground Truth Region
 

 

        (3) 

        (5) 

        (6) 
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3. Precision: 

Precision assesses the accuracy of positive predictions made by the model, focusing on the 

ratio of true positives (TP) (correctly predicted cerebrovascular structures) to the sum of 

true positives and false positives (FP) (non-cerebrovascular structures incorrectly identified 

as positive). In the context of cerebrovascular segmentation, precision is crucial for 

minimizing false positives and ensuring accurate identification of cerebrovascular 

structures. 

𝑃𝑟ⅇ𝑐ⅈ𝑠ⅈ𝑜𝑛 =
𝑇𝑃

TP + FP
 

A higher precision value implies fewer false positives, reflecting the model's capability to 

precisely identify cerebrovascular structures while minimizing incorrect positive 

predictions. 

4. Recall: 

Recall, also known as sensitivity, measures the model's ability to capture all relevant 

positive instances. In cerebrovascular segmentation, recall is calculated as the ratio of true 

positives (TP) to the sum of true positives and false negatives (FN) (cerebrovascular 

structures missed by the model). High recall values indicate the model effectively identifies 

most actual cerebrovascular structures, minimizing false negatives. 

 

𝑅ⅇ𝑐𝑎𝑙𝑙 =
𝑇𝑃

TP + FN
 

 

5. F1 Score (F1 Measure): 

𝐹1 =
2 ×  Precision ×  Recall

Precision +  Recall
 

The F1 score, tailored for cerebrovascular segmentation, combines precision and recall. 

True Positive (TP) represents the correctly identified cerebrovascular pixels, False Positive 

(FP) is the misclassified background pixels as cerebrovascular, and False Negative (FN) is 

the misclassified cerebrovascular pixels as background. The F1 score ranges from 0 to 1, 

with higher values indicating a better balance between precision and recall in the context of 

cerebrovascular segmentation. These metrics collectively offer a comprehensive evaluation 

of cerebrovascular segmentation algorithms, considering accuracy, spatial overlap, and 

boundary correspondence. 

 

 

        (9) 

        (7) 

        (8) 
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4.4 Dataset 
 

The utilized dataset, TubeTK [37], is publicly accessible and comprises 3D TOF-MRA 

images, along with T1-weighted and T2-weighted images, gathered from a cohort of 110 

healthy patients. Specifically, spatial labels for TOF-MRA data were available for 42 sub 

jects and were transformed into NIfTI format using the TubeTK open-source toolkit. The 

dataset underwent a random partitioning into subsets of 32, 4, and 6 subjects for train ing, 

validation, and testing of the model, respectively. The dimensions of the 3D TOF-MRA 

image were 384 × 384 × 128, with a voxel size spacing of 0.5134mm × 0.51234mm × 

0.8mm. For the remaining 68 subjects, data labels are used as unlabeled data, and the same 

preprocessing and patch generation methodologies were applied before being input into the 

network. 

4.5 Experiment Result 
 

4.5.1 Quantitative results 

 

Applying the method to the TOF-MRA volumes, the output segmentation mask maps are 

observed. Through this evaluation, the effectiveness of this approach ascertained in 

accurately delineating cerebrovascular structures. 

By following this methodology, it is addressed the unique complexities of cerebrovascular 

segmentation, ensuring robust results in TOF-MRA volumes. 

The training and validation loss during training time has shown below: 

Figure 4.1 shows the training and validation loss curve which illustrates the model’s 

progression over 50 epochs, starting with an initial training loss of 0.55 and validation loss 

of 0.43. Through training, the losses steadily decrease, reaching 0.16 for training and 0.20 

for validation at the 46th epoch, representing the point of optimal convergence. 
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Figure 4.1: Loss Curve on Training loss and Validation loss  

 

In the experimental section, the base architecture was selected from the autoencoder model 

: base Unet, attention-Unet, nn-Unet and the loss function is chosen from: Dice Cross 

Entropy Loss (LDice-CE), Dice Focal Loss (LDice-focal), and hybrid loss from both (Lhybrid = 

(LDice-CE) + (LDice-focal) ). 

The selection of base architectures along with the incorporation of specific loss functions, 

is necessitated by the need to comprehensively evaluate and compare the performance of 

different architectural configurations and loss functions in the context of cerebrovascular 

segmentation. This systematic exploration enables a deeper understanding of the impact of 

architectural choices and loss formulations on the segmentation outcomes, facilitating the 

identification of optimal configurations for improved segmentation results. 

Table 4.1 presents the cerebrovascular segmentation performance across different variants 

of the proposed method. The nn Unet with Hybrid loss demonstrates the best overall 

performance, achieving the highest Dice Coefficient, IoU score, and f1-score among the 

evaluated configurations. 
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Table 4.1: Cerebrovascular Segmentation Evaluation on different variants of 

Proposed Method 

AutoEncoder Model Loss Function Dice Coefficient (%) IoU score (%) 

Base Unet Dice-CE 54.89 36.54 

Base Unet Dice-Focal 51.01 42.72 

Base Unet Hybrid 56.47 40.25 

Attention Unet Dice-CE 67.50 56.54 

Attention Unet Dice-Focal 65.72 52.72 

Attention Unet Hybrid 69.75 54.62 

nn Unet Dice-CE 73.41 59.20 

nn Unet Dice-Focal 79.45 61.19 

nn Unet Hybrid 81.01 62.54 

 

The best performance evaluation of the cerebrovascular segmentation is from nn-Unet with 

hybrid loss which is shown below: 

The proposed cerebrovascular segmentation method demonstrates outstanding 

performance. These compelling results highlight the effectiveness of the proposed method 

in accurately delineating cerebrovascular structures, showcasing its potential for robust and 

precise segmentation in medical imaging applications. 

Table 4.2 presents the best performance metrics achieved by the proposed cerebrovascular 

segmentation method. The evaluation includes F1-Score, Dice Coefficient, and Intersection 

over Union (IoU), showcasing the effectiveness of the approach in accurately delineating 

cerebral vascular structures. 

Table 4.2: Best performance of Cerebrovascular Segmentation by the Proposed 

Method 

Evaluation Metrices Value 

Precision 0.8262 

Recall 0.8002 

F1-Score 0.8130 

Dice coefficient 0.8101 

Intersection over Union (IOU) 0.6273 
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4.5.2 Qualitative results 

 

A random predicted mask and its corresponding original mask are plotted below: 

 

   

(a) Axial plane (b) Sagittal plane (c) Coronal plane 

Figure 4.2: Brain MRA image with sparse labels in three views and 3D sparse labels. 

 

Figure 4.2 showcases a Brain MRA (Magnetic Resonance Angiography) image with sparse 

labels, offering a detailed annotation in three distinct views. In axial plane (a), the sparse 

labels provide a cross-sectional representation, while the sagittal plane (b) and coronal plane 

(c) offer longitudinal and frontal perspectives, respectively. The 3D sparse labels contribute 

to a comprehensive understanding of cerebrovascular structures, facilitating accurate seg 

mentation. 

This multi-view annotation enhances the dataset's richness, enabling the proposed semi-

supervised segmentation model to learn from diverse perspectives for improved 

performance. 

Here, figure 4.3 presents segmentation maps of four image samples extracted from random 

crop patches. In these maps, the original cerebral blood vessels are depicted in white, while 

the model predictions are highlighted in red. This visual representation offers a direct 

comparison between the actual vessels and the segmentation results, providing insights into 

the accuracy and efficacy of the proposed semi-supervised segmentation framework. 
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(a) (b) 

 

(c) (d) 

Figure 4.3: Segmentation maps of four image samples from random crop patches, 
where white represents the original cerebral blood vessels, red shows the prediction. 

 

In figure 4.4, it provides an in-depth exploration of the segmentation outcomes for fully 

reconstructed images. The reference point is set by (a) the original full volume, offering a 

comprehensive view of the cerebral vasculature. In contrast, (b) unveils the predicted full 

volume generated by our proposed model, showcasing the model's ability to delineate blood 

vessels. The Maximum Intensity Projection (MIP) volumes offer nuanced insights: (c) 

reveals regions of False Positives (FP) denoted in white, signifying areas where the model 

erroneously identified structures as vessels. On the other hand, (d) delineates False 

Negatives (FN) in red, pinpointing locations where the model failed to detect actual vessels. 

This multifaceted visualization facilitates a meticulous evaluation of the segmentation 

performance, allowing a focused examination of specific regions within the fully 

reconstructed images. 
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(a) Ground Truth Mask (b) Predicted Mask 

 

(c) MIP of FP (d) MIP of FN 

Figure 4.4: Segmentation maps of fully reconstructed images: (a) original full 

volume, (b) predicted full volume, (c) Maximum Intensity Projection (MIP) volume 

where white shows the False Positives (FP), (d) Maximum Intensity Projection (MIP) 

volume where red represents the False Negatives (FN). 

 
4.5.3 Analysis of the results 

 

The analysis of the results reveals the efficacy of the proposed semi-supervised 

cerebrovascular segmentation model. Through comprehensive evaluation metrics, including 

F1-Score, Dice coefficient, Intersection over Union (IOU), the model showcases high-

performance gains. The F1-Score, measuring the balance between precision and recall, 

attains a notable value of 0.8130, indicating the model's ability to achieve a harmonious 
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blend of accuracy and completeness. Furthermore, the Dice coefficient, reflecting the 

overlap between predicted and ground truth segmentations, reaches a substantial value of 

0.8101, signifying the robustness of the model in capturing relevant cerebrovascular 

structures. The IOU, emphasizing the agreement between predicted and actual 

segmentations, achieves a commendable value of 0.6273, demonstrating the model's 

consistency in delineating structures accurately. The results collectively highlight the 

model's effectiveness in automating cerebrovascular segmentation, reducing manual efforts, 

and providing accurate and reliable diagnostic insights for improved patient care. 

Table 4.3 presents a comparative analysis of three training methodologies employed in the 

proposed framework. The Supervised method achieves a Dice Score of 71.95% and IoU 

Score of 52.01%. Moving towards Semi-Supervised training, both Dice and IoU Scores 

exhibit improvements, reaching 74.40% and 55.90%, respectively. The highest performance 

is observed in the Semi-Supervised method with confident prediction, showcasing 

significant enhancements with a Dice Score of 81.01% and IoU Score of 62.73%. This 

comparison highlights the effectiveness of incorporating unlabeled data and confident-

aware training strategies in enhancing cerebrovascular segmentation accuracy. 

Table 4.3: Comparison with three training procedure that proposed  

Methods Dice Score IoU Score 

Supervised Approach 71.95% 52.01% 

Semi-Supervised Approach 74.40% 55.90% 

Semi-supervised with confident prediction 81.01% 62.73% 

 

Table 4.4 presents a comparative analysis between the proposed cerebrovascular 

segmentation method and recent existing approaches. The evaluation encompasses key 

metrics such as Dice coefficient score, Intersection over Union (IoU) score. The proposed 

method's performance is juxtaposed against state-of-the-art techniques, providing a 

comprehensive overview of its efficacy in delineating cerebral blood vessels. This 

comparative assessment aims to underscore the advancements and strengths offered by the 

proposed methodology in the context of cerebrovascular segmentation. 
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Table 4.4: Comparison with recent existing Cerebrovascular Segmentation with the 

Proposed Method 

Source Dice Score IoU Score 

MTCL [32] 60.95% 49.01% 

SLD [33] 58.40% 52.9% 

V-Net [34] 62.67% 57.01% 

Uception [35] 67.68% 57.98% 

RE-NET [36] 79.90% 57.01% 

The Proposed Method 81.01% 62.73% 

 

4.6 Objective Achieved 

The objectives achieved by the proposed model of semi-supervised approach with 

uncertainty awareness are as follows: 

1. Enhanced Diagnostic Reliability: By implementing a semi-supervised segmentation 

approach, the model reduces human errors and biases in cerebrovascular diagnosis, 

thereby enhancing diagnostic reliability. 

2. Automated Segmentation: The model automates the segmentation process, providing 

accurate cerebrovascular structure segmentation and minimizing manual data labeling 

efforts. 

3. Effective Utilization of Unlabeled Data: Leveraging semi-supervised learning 

techniques, the model maximizes segmentation performance by effectively utilizing both 

labeled and unlabeled samples. 

4. Improved Generalization: The segmentation model demonstrates enhanced capability 

for accurate segmentation across diverse training approaches, improving generalization. 
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5. Robustness Against Artifacts: The model is designed to exhibit resilience against 

imaging artifacts, noise, and variations in imaging parameters, ensuring robustness in 

segmentation. 

6. Handling Volume Reshaping Challenges: Implementing patch-based training and 

inference, the model effectively addresses challenges associated with reshaping MRA 

volume data, offering a distinctive approach to reconstructing the original volume. 

7. Providing Informed Diagnostic Insights: The model offers clinicians accurate and 

detailed segmentation results, providing informed diagnostic insights for improved 

decision-making. 

8. Optimized Uncertainty Awareness: Through an advanced optimization process that 

considers uncertainties in the data, the model enhances robustness, ensuring optimized 

uncertainty awareness. 

9. Addressing Imbalanced Class Problems: The model introduces a custom loss function 

to tackle challenges posed by imbalanced class distribution in cerebrovascular 

segmentation, effectively handling imbalanced class problems. 

10. Advancement in Medical Image Analysis: By applying state-of-the-art techniques, the 

model contributes to the advancement of medical image analysis, particularly in 

cerebrovascular segmentation. 

11. Effective Utilization of Semi-Supervised Learning: Incorporating an effective semi-

supervised learning method, the model leverages advantages offered by both labeled and 

unlabeled data, resulting in improved accuracy and robustness in segmentation. 

 

4.7 Financial Analysis and budget 
 

A comprehensive budget outline for the proposed cerebrovascular segmentation method 

considers various factors.  

Table 4.5 provides a comprehensive financial analysis outlining the budget considerations 

for the proposed cerebrovascular segmentation method. The associated costs, ex pressed in 

Bangladeshi Taka (BDT), cover essential aspects such as data collection, computational 
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resources, bandwidth, electricity usage, printing, operational expenses, and the installation 

of Solid State Drive (SSD) in the PC. This breakdown offers a structured overview of the 

financial requirements for implementing the proposed methodology. 

 

    Table 4.2: Necessary Financial Analysis with Budget 

Issue 
Cost/ Budget (in BDT) 

 

Data Collection Costs 500 

Computational Resources 80000 

Bandwidth Costs 2000 

Electricity Usage 1500 

Binding and Printing 2000 

Operational Costs 1000 

SSD Installation in PC 4000 

Total Cost  90600 

 

 

4.7 Conclusion 
 

The implemented semi-supervised framework demonstrates remarkable efficiency in 

cerebrovascular segmentation from 3D MRA images. The model exhibits adaptability to 

diverse datasets, reduces manual efforts through automated segmentation, and achieves 

consistent results even in challenging imaging conditions. The integration of labeled and 

unlabeled data via semi-supervised learning enhances accuracy, contributing to more 

reliable diagnoses and improved patient care. The comprehensive evaluation and analysis 

provide insights into the strengths and potential areas of enhancement, marking a significant 

step forward in advancing medical image analysis. 
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CHAPTER V 

 

Societal, Health, Environment, Safety, Ethical, Legal and Cultural Issues 
 

 

5.1   Intellectual Property Considerations 

Intellectual Property Considerations for the study on 3D Cerebrovascular Semantic 

Segmentation of MRA Data encompass various aspects related to potential proprietary 

elements within the research, the developed model, and the overall work. The innovative 

methodologies, algorithms, and unique approaches employed in the creation of the 

segmentation model may be eligible for intellectual property protection, such as patents, to 

safeguard novel contributions in the domain of medical image analysis. The insights derived 

and the advancements made throughout the research process contribute to the intellectual 

property landscape. 

However, it is crucial to navigate institutional policies and collaborative agreements that 

dictate the ownership and sharing of intellectual property. The thesis itself, serving as a 

comprehensive documentation of intellectual contributions, assumes a pivotal role in 

establishing originality and ownership. The consideration of legal frameworks and 

collaboration agreements is paramount in determining the scope and limitations of potential 

protection. Seeking guidance from legal experts or liaising with the institution's intellectual 

property office becomes imperative to comprehend specific regulations, potential avenues 

for protection, and adherence to ethical standards. Striking a balance between protecting 

intellectual assets and upholding academic integrity is a key consideration in navigating the 

complex landscape of intellectual property within the context of this research endeavor. 

5.2   Ethical Considerations 
 

This section delves into the critical aspects of morality and ethical considerations governing 

the research on 3D Cerebrovascular Semantic Segmentation of MRA Data. A cornerstone 

of ethical conduct in academic research lies in the proper attribution of resources, and this 

thesis meticulously adheres to this principle. Every resource utilized in the research, ranging 

from research papers to datasets and tools, has undergone thorough acknowledgment and 
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citation. This rigorous practice serves a dual purpose of ensuring transparency in the 

utilization of external sources and upholding the integrity of the scholarly work. 

Furthermore, ethical standards dictate a profound respect for the original authors whose 

works form the foundation of this research. By offering due credit to these authors for their 

invaluable contributions, this thesis not only combats plagiarism but also reflects a deep-

seated reverence for intellectual property. The acknowledgment of the original creators 

aligns with the ethos of academic integrity, fostering an environment of scholarly 

collaboration and mutual respect. 

Ethical considerations extend beyond the mere act of citation to encompass the responsible 

handling of sensitive medical data. Privacy and confidentiality are paramount when dealing 

with medical images, and the thesis rigorously adheres to established protocols and 

regulations. Any datasets used are treated with utmost confidentiality and handled within 

the ethical guidelines set forth by relevant institutions. 

Moreover, ethical principles underscore the commitment to open and honest communication 

of research findings. The thesis adheres to the highest standards of transparency in 

presenting methodologies, results, and conclusions. Any limitations or uncertainties in the 

research process are openly acknowledged, contributing to the overall ethical conduct of the 

study. 

5.3 Safety Considerations 
 

Safety considerations are paramount in the research conducted on 3D Cerebrovascular 

Semantic Segmentation of MRA Data. While the focus of safety in this context may not be 

on physical hazards, as in other fields, it pertains to the responsible handling of data, tools, 

and methodologies to ensure the well-being of both researchers and the subjects involved. 

One fundamental aspect of safety is the secure and responsible management of medical data. 

The thesis acknowledges the sensitivity of the data utilized, emphasizing stringent 

adherence to privacy and confidentiality standards. All necessary precautions are taken to 

protect the identities and medical histories of individuals whose images contribute to the 

research. This commitment aligns with ethical considerations but also has a safety 

dimension, preventing any unintended harm that could arise from the mishandling of 

personal medical information. 
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Additionally, safety considerations extend to the usage of tools and technologies involved 

in the segmentation process. The software and frameworks employed undergo rigorous 

evaluation to ensure their reliability, stability, and security. This safeguards against potential 

risks such as data corruption, loss, or unauthorized access, contributing to the overall safety 

of the research infrastructure. 

Moreover, the safety of the researchers themselves is a paramount concern. Adherence to 

best practices in data handling and analysis minimizes the risk of errors that could propagate 

through the research process. This includes robust version control mechanisms, regular 

backups, and the implementation of secure computing environments. These measures not 

only enhance the safety of the research process but also contribute to the reliability of the 

findings. 

This section on Safety Considerations underscores the commitment to ensuring the safety 

of both data and researchers in the study of 3D Cerebrovascular Semantic Segmentation of 

MRA Data. It highlights the responsible management of medical information, the evaluation 

of tools for reliability, and the implementation of best practices to enhance overall safety in 

the research environment. 

5.4 Legal Considerations 
 

Legal considerations in the context of the thesis on 3D Cerebrovascular Semantic 

Segmentation of MRA Data are crucial to ensure compliance with existing laws and 

regulations governing medical research and data usage. Adhering to legal standards not only 

upholds the integrity of the research but also protects the rights of individuals and 

institutions involved. 

One primary legal consideration revolves around data privacy and protection. The use of 

medical images demands strict adherence to laws such as the Health Insurance Portability 

and Accountability Act (HIPAA) in the United States or similar regulations in other regions. 

The thesis diligently follows these legal frameworks, obtaining necessary permissions and 

ensuring that all processes comply with the stipulated guidelines to safeguard the privacy 

and rights of patients whose data contributes to the research. Another legal aspect involves 

intellectual property rights. Proper attribution and citation of all resources, including 

research papers, datasets, and tools, are integral to avoid copyright infringement. The thesis 
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explicitly acknowledges the contributions of original authors, respecting their intellectual 

property rights and ensuring that the work is conducted within legal and ethical boundaries. 

Furthermore, legal considerations extend to the responsible use of open-source tools and 

frameworks. The thesis ensures compliance with licensing agreements and usage policies 

associated with the software employed in the segmentation process. This not only prevents 

legal complications but also fosters a collaborative and ethical research environment. 

In the dissemination of research findings, legal considerations play a vital role. Proper 

documentation and permissions are obtained for any proprietary or copyrighted material 

used in presentations, publications, or other forms of communication. This ensures that the 

research output adheres to copyright laws and ethical standards, avoiding any legal disputes. 

In summary, Legal Considerations in this thesis emphasize adherence to data protection 

laws, respect for intellectual property rights, compliance with licensing agreements, and 

proper documentation for the ethical dissemination of research findings. These measures 

collectively contribute to the legal integrity of the research and promote a responsible and 

lawful approach to 3D Cerebrovascular Semantic Segmentation of MRA Data. 

5.5 Impact of the Project on Societal, Health, and Cultural Issues 
 

The impact of the project on societal, health, and cultural issues is multifaceted, reflecting 

positive outcomes that extend beyond the confines of medical research. The proposed 

cerebrovascular segmentation method not only addresses technical challenges but also holds 

significant promise in transforming healthcare practices and contributing to broader societal 

well-being. 

Foremost, the project significantly enhances diagnostic precision, offering medical 

professionals clearer visual insights into cerebrovascular structures. This advancement 

contributes to more accurate diagnoses, fostering safer medical interventions and ultimately 

improving patient outcomes. By elevating the quality of diagnostic information, the project 

becomes a catalyst for positive transformations in clinical practices, promoting a culture of 

precision and effectiveness in healthcare. Furthermore, the project plays a pivotal role in 

preserving neural health by effectively identifying and understanding cerebrovascular 

anomalies. This knowledge empowers healthcare professionals to make informed decisions 

about treatment strategies, potentially minimizing risks and enhancing overall patient well-
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being. The emphasis on neural health aligns with broader societal goals of promoting 

comprehensive healthcare that addresses not only immediate concerns but also long-term 

neurological well-being. 

A notable societal impact of the project is the potential reduction in intervention frequency. 

The automated segmentation method reduces the necessity for repeated invasive procedures, 

thereby minimizing disturbances to patients' health and well-being. This approach aligns 

with principles of patient-centered care, emphasizing sustainability and consideration for 

patients' needs. By minimizing the burden of invasive interventions, the project contributes 

to a more patient-friendly healthcare ecosystem. Beyond the realm of healthcare, the project 

fosters public awareness and support for cerebrovascular health. The provision of more 

precise diagnostic information facilitates informed public discussions, raising awareness 

about the significance of cerebrovascular health. This heightened awareness has the 

potential to encourage support for initiatives focused on neurological health research and 

patient well-being, thereby driving sustainable efforts in healthcare. 

The impact of the project extends from technical advancements to positive societal, health, 

and cultural outcomes. Through enhanced diagnostic precision, preservation of neural 

health, reduced intervention frequency, and increased public awareness, the project aligns 

with broader goals of improving healthcare practices and contributing to societal well-being. 

5.5 Impact of Project on the Environment and Sustainability 
 

The impact of the project on the environment and sustainability reflects a commitment to 

responsible research practices that extend beyond the immediate scope of medical 

advancements. While the primary focus is on improving cerebrovascular segmentation, the 

project aligns with principles of environmental consciousness and sustainability in several 

ways. 

Firstly, the proposed cerebrovascular segmentation method, by enabling more accurate 

diagnoses, contributes to a reduction in unnecessary medical interventions. This reduction 

not only benefits patient well-being but also aligns with sustainability goals by minimizing 

the environmental footprint associated with medical procedures. The decreased need for 

invasive interventions results in lower resource consumption, reduced medical waste, and a 

more eco-friendly approach to healthcare. Additionally, the automation of the segmentation 
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process introduces efficiency gains, leading to potential reductions in energy consumption 

associated with manual intervention and analysis. The shift toward automated, technology-

driven approaches is indicative of a broader trend in promoting sustainable practices within 

the healthcare sector. The project, by embracing technological advancements for improved 

diagnostics, aligns with the overarching goal of creating more sustainable and efficient 

healthcare systems. 

Moreover, the project's potential to reduce the frequency of invasive procedures has 

implications for resource conservation. Fewer interventions mean less demand for medical 

resources, including equipment, disposables, and energy. This resource conservation 

contributes to a more sustainable healthcare ecosystem, promoting responsible resource 

management and minimizing the environmental impact associated with medical practices. 

In essence, the impact of the project on the environment and sustainability goes beyond the 

realm of medical research, embodying a commitment to eco-conscious practices in 

healthcare. Through the reduction of unnecessary interventions, increased efficiency, and 

responsible resource management, the project aligns with broader goals of creating a 

healthcare landscape that is not only technologically advanced but also environmentally 

sustainable. 

 

 

 

 

 

 

 

 

 

 

 



46 

 

CHAPTER VI 

 

Addressing Complex Engineering Problems and Activities 

 

6.1   Complex engineering problems associated with the current thesis 

The current project entails addressing complex engineering problems that span various 

facets, with a particular emphasis on the intricacies of medical data collection, privacy 

concerns, and the broader challenges associated with cerebrovascular segmentation. 

Table 6.1 highlights the intricate engineering challenges encountered in the domain of 

cerebrovascular segmentation. These complexities, ranging from intricate anatomical 

patterns to imbalanced class distributions, are systematically documented to underscore the 

multifaceted nature of the segmentation task. The table serves as a comprehensive reference 

for understanding the nuanced issues that necessitate advanced methodologies in the pursuit 

of accurate and robust cerebrovascular segmentation. 

Table 6.1: Complex Engineering Problems in Cerebrovascular Segmentation 

Attribute Complex Engineering Problems 

Depth of 

knowledge 

required 

P1 The 3D cerebrovascular semantic segmentation demands a 

profound depth of knowledge in various domains. This research 

requires an in-depth understanding of medical imaging, 

particularly in the context of cerebrovascular structures. A 

comprehensive grasp of advanced computational methods, 

including deep learning and neural network architectures, is 

crucial for developing and optimizing the proposed model. 

Moreover, proficiency in image processing, segmentation 

techniques, and data augmentation strategies is essential for 

overcoming challenges associated with diverse datasets and 

imaging modalities. The depth of knowledge required 

encompasses a fusion of medical expertise, computational 

proficiency, and engineering acumen to navigate the intricacies 
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of cerebrovascular segmentation, ultimately contributing to 

advancements in medical image analysis. 

Range of 

conflicting 

requirements 

P2 Cerebrovascular semantic segmentation thesis encounters a 

range of conflicting requirements. Balancing the need for 

accurate segmentation with the demand for computational 

efficiency poses a fundamental challenge. The model must 

navigate trade-offs between complexity and interpretability 

while addressing diverse datasets and modalities. Striking a 

balance between robustness against artifacts and real-time 

processing adds another layer of conflicting requirements.  

Depth of analysis 

required  

P3  Delving into intricate details of medical image structures, 

understanding the nuances of diverse datasets, and addressing the 

complex challenges associated with neurovascular anatomy 

require a comprehensive and in-depth analytical approach. The 

analysis spans not only the technical aspects of the segmentation 

model but also extends to the broader implications on diagnostic 

reliability, clinical decision-making, and advancements in 

medical imaging practices. Achieving a thorough understanding 

of these multifaceted dimensions is essential for unraveling the 

complexities embedded in the proposed model and its application 

in the field of cerebrovascular segmentation. 

Familiarity of 

issues 

P4 Navigating the landscape of cerebrovascular segmentation 

introduces a familiarity with intricate issues and challenges. 

Understanding the complexities of neurovascular anatomy, the 

variability in imaging datasets, and the impact of imbalanced 

class distributions necessitates a nuanced awareness. Familiarity 

extends to the challenges of handling uncertainties, artifacts, and 

the integration of advanced computational methods. This depth 

of understanding is crucial in addressing the multifaceted issues 

inherent in cerebrovascular segmentation, ensuring the proposed 

model aligns with the intricate demands of medical imaging and 

contributes meaningfully to the field. 
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Extent of 

applicable codes 

P5 Understanding the extent of applicable codes is crucial, 

encompassing the utilization of advanced computational 

methods and innovative approaches for cerebrovascular 

segmentation. The model's adaptability and implementation 

across diverse datasets underscore the wide-ranging applicability 

of the proposed codes. 

Extent of 

stakeholder 

involvement and 

conflicting 

requirements 

P6 The extent of stakeholder involvement and conflicting 

requirements in the thesis involves navigating a complex 

landscape. Balancing diverse stakeholder interests and 

addressing conflicting requirements is essential for the success 

of the proposed model in 3D cerebrovascular semantic 

segmentation. 

Interdependence P7 The intricacies of the model's architecture, data preprocessing, 

and overall methodology showcase a carefully woven system 

where each component relies on the others for optimal 

performance. This interdependence ensures that changes or 

improvements in one aspect can have ripple effects across the 

entire system, emphasizing the need for a holistic and integrated 

approach in addressing complex engineering challenges. 

 

6.2   Complex engineering activities associated with the current thesis 

 

The complexity of the current thesis extends beyond the model architecture, encompassing 

various facets of the research endeavor. The problem statement itself introduces challenges 

associated with cerebrovascular segmentation, emphasizing the critical need for accurate 

identification of blood vessels within the brain for medical diagnosis and surgical planning.  

 

Table 6.2 outlines the diverse engineering activities intricately linked to cerebrovascular 

segmentation. These activities, spanning from algorithmic innovations to uncertainty-aware 

optimization, provide a comprehensive overview of the multifaceted approach required for 

addressing the complexities inherent in cerebrovascular image analysis.  
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Table 6.2: Complex engineering activities associated with Cerebrovascular Segmentation 

Attribute Addressing the Attributes of Complex Engineering Activities 

Range of 

resources 

A1 The 3D cerebrovascular semantic segmentation necessitates a broad 

range of resources. This includes computational resources for training 

deep learning models, substantial labeled and unlabeled medical 

imaging datasets, and access to advanced imaging modalities such as 

3D Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA). 

Additionally, expertise in medical imaging, deep learning, and 

computational methods is crucial. The range of resources required 

underscores the complexity of the engineering activities involved in 

developing and implementing the proposed model. 

Level of 
interaction 

A2 3D cerebrovascular semantic segmentation involves close 

collaboration between experts in medical imaging, deep learning, and 

computational methods. The iterative nature of model development 

requires constant communication and feedback loops to refine and 

optimize the segmentation approach. The interaction extends to the 

utilization of diverse datasets, incorporating both labeled and 

unlabeled data, and addressing challenges in real-world applications. 

The high level of interaction reflects the complexity of coordinating 

multidisciplinary efforts in this engineering endeavor. 

Innovation A3 The proposed 3D cerebrovascular semantic segmentation model 

introduces novel approaches, including a custom loss function to 

handle class imbalance, a patch-based training and inference strategy, 

and a semi-supervised framework that effectively leverages both 

labeled and unlabeled data. These innovative techniques contribute to 

the advancement of medical image analysis, addressing challenges. 

The incorporation of uncertainty-aware optimization and the 

consideration of imbalanced class problems showcase a forward-

thinking and pioneering approach, pushing the boundaries of current 

methodologies in the field. The research demonstrates a commitment 

to innovation, aiming to improve the accuracy, efficiency, and 

robustness of cerebrovascular segmentation in medical imaging. 

 

In conclusion, this section delineates the intricate engineering activities essential for 

advancing the field of cerebrovascular segmentation, emphasizing the need for a holistic 

and innovative approach to address the challenges in medical image analysis. 
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CHAPTER VII 

 

 Conclusions 

 

7.1   Summary 
 

Embarking on a journey to advance cerebrovascular segmentation for improved medical 

diagnostics, this thesis has traversed a trajectory marked by innovation, challenges, and 

continuous refinement. The initial impetus for the research was rooted in addressing the 

time-consuming and error-prone nature of current practices, steering the focus towards 

leveraging deep learning for cerebrovascular segmentation. The proposed semi-supervised 

framework demonstrated its potential to revolutionize cerebrovascular segmentation by 

effectively utilizing unlabeled data through consistent predictions. The model's adaptability 

to diverse datasets, robustness to imaging artifacts, and reduced dependency on extensive 

labeled data positions it as a promising advancement in the field. 

However, the journey was not without its challenges. Time-intensive training, GPU 

dependencies, and resource constraints presented formidable hurdles that demanded 

strategic solutions. The imbalanced nature of datasets, intricacies of transformer 

architectures, and memory constraints prompted nuanced considerations, shaping the 

methodology's evolution. This research signifies a significant step towards automating and 

enhancing the accuracy of cerebrovascular segmentation, contributing to expedited 

diagnostics and subsequent clinical decision-making. The proposed semi-supervised 

framework, despite its challenges, underscores the potential of merging deep learning with 

medical imaging. As the investigation continues, the insights gained from overcoming 

challenges will propel the refinement of the proposed method, fostering a new era in 

cerebrovascular segmentation for improved healthcare outcomes. This journey, marked by 

innovation and resilience, lays the groundwork for future advancements in medical image 

analysis and underscores the enduring commitment to advancing healthcare through cutting-

edge research. 

7.2 Limitations 
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Data Availability and Diversity: The research relied on publicly available datasets, which 

may not comprehensively represent the diverse range of clinical scenarios and 

demographics encountered in real-world medical imaging. Limited access to expansive 

datasets might affect the model's generalizability. 

Imbalanced Data Challenges: While efforts were made to address imbalanced datasets, the 

model's performance could be influenced by the distribution of labeled and unlabeled data, 

potentially leading to biased results in certain clinical scenarios. 

GPU Resource Dependency: The training process's dependency on GPU resources might 

pose practical challenges in resource-constrained environments. This limitation could 

hinder the widespread applicability of the proposed method, particularly in settings with 

limited access to high-performance computing resources. 

Architecture Complexity: Implementing an uncertainty-aware teacher-student model 

introduced challenges in managing the intricate interactions between the models. The 

nuanced nature of this approach may have implications for its efficiency, particularly in the 

context of specific medical imaging applications. Further exploration and refinement are 

essential to optimize the performance of the uncertainty-aware teacher-student model in the 

given domain. 

Model Interpretability: The interpretability of deep learning models, including the proposed 

semi-supervised framework, remains a challenge. Understanding the model's decision-

making process is crucial for gaining clinicians' trust and ensuring the method's adoption in 

real-world medical settings.  

Clinical Validation: The research primarily focused on technical advancements and lacked 

comprehensive clinical validation. Real-world clinical validation is essential to assess the 

model's performance, reliability, and safety in diverse healthcare scenarios.  

Temporal Dynamics: The research did not explicitly address temporal dynamics in medical 

imaging. Incorporating temporal aspects, such as changes in vascular structures over time, 

could enhance the model's utility for longitudinal studies.  
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External Validation: External validation on datasets from different sources and imaging 

modalities was limited. Ensuring the model's robustness across diverse datasets is critical 

for its generalizability and applicability to a broader range of clinical scenarios. 

Understanding and addressing these limitations is crucial for refining the proposed 

methodology and ensuring its seamless integration into practical healthcare settings. Future 

work should strive to overcome these constraints, fostering a more comprehensive and 

robust solution for cerebrovascular segmentation. 

Strategically addressing these challenges remains pivotal as I continue my research journey. 

By formulating effective approaches to overcome these hurdles, I aspire to refine my 

proposed cerebrovascular segmentation method, leading to more promising outcomes in the 

ongoing stages of my investigation. 

 

7.3   Future Works 

The current implementation has successfully focused on the supervised segment of the 

proposed cerebrovascular segmentation method, particularly the shared encoder and main 

decoder. The immediate trajectory involves finalizing the unsupervised components, 

specifically the convolutional decoder and the remaining architecture. Subsequent efforts 

will emphasize the following areas:  

Unsupervised Consistency-Based Training Completion: The next crucial step is the full 

development and integration of the unsupervised components, including the convolutional 

decoder and the rest of the network architecture. This will enhance the model's capacity for 

self-learning and adaptation.  

Performance Optimization: Fine-tuning the architecture and hyperparameters offers 

opportunities for improved segmentation performance. Exploring various configurations of 

the convolutional decoder and the transformer-based decoder, coupled with adjustments to 

loss functions, could potentially yield more accurate and consistent segmentation results.  

Robustness and Generalization: Ensuring the model's robustness against artifacts such as 

noise and variations in imaging parameters is crucial for real-world applications. Strategies 

like data augmentation and expansion will be employed to enhance the model's adaptability 

to diverse input scenarios.  
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Data Augmentation and Expansion: Augmenting the labeled dataset with synthetic data and 

carefully generated variations can further improve the model's ability to handle diverse input 

scenarios. Expanding the dataset to include more diverse cases and anatomical variations 

will enhance the model's capability to accurately segment cerebrovascular structures.  

Transfer Learning: Exploring transfer learning approaches by pretraining on related medical 

imaging tasks could potentially accelerate convergence and enhance segmentation accuracy, 

especially when labeled data is limited.  

Domain Adaptation Techniques: Investigating domain adaptation techniques will be 

explored to enhance the model's ability to perform well on datasets with different 

characteristics or sources.  

Different Student-Teacher Models: Trying various student-teacher model architectures, 

including ensemble models and attention mechanisms, will be considered to evaluate their 

impact on segmentation accuracy.  

Utilizing Different Datasets: Expanding the evaluation to include diverse datasets from 

various sources will provide insights into the model's generalization capabilities across 

different medical imaging data. 

Cross-Validation: Implementing cross-validation techniques will be essential for robustly 

assessing the model's performance and generalization across multiple folds of the dataset. 

Optimizing Preprocessing Steps: Investigating and refining preprocessing steps, including 

skull stripping and image normalization, will contribute to enhancing the overall robustness 

and performance of the model. 

By addressing these aspects and completing the implementation of the unsupervised 

components, the proposed method aspires to stand as a reliable and versatile tool for 

cerebrovascular segmentation, advancing medical image analysis and diagnosis. By 

addressing these aspects and completing the implementation of the unsupervised 

components, the proposed method aspires to stand as a reliable tool for cerebrovascular 

segmentation, advancing medical image analysis and diagnosis. 
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